Tìm các số a và b biết rằng a3+b3 = 152,a2 + b2 - ab = 19,a - b = 2
Tui đang cần gấp giải giúp tui với
Cho a3+b3=2.CMR:a+b\(\le\)2
Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.
Cho a+b+c+d=0
CMR: a3+b3+c3+d3=3(c+d)(ab+cd)
Giúp mik nhá mọi người
Giải phương trình:
a) \(\left|x-2018\right|^{2019}+\left|x-2019\right|^{2018}=1\)
b)\(\frac{2x}{x^2-x+1}-\frac{x}{x^2+x+1}=\frac{5}{3}\)
Cho: và . CMR:
Đưa về dạng a3 + b3 :
4) x3 - 3x2 + 3x + 64
ta có
\(\frac{\left(2018-x\right)^2+\left(2018-x\right)\left(x-2019\right)+\left(x-2019\right)^2}{\left(2018-x\right)^2-\left(2018-x\right)\left(x-2019\right)-\left(x-2019\right)^2}=\frac{19}{49}\) ( điều kiện : x khác : 2018;2019 )
đặt a = x - 2019 ( a khác 0 )
ta có hệ thức :
\(\frac{\left(a+1\right)^2-\left(a+1\right)a+a^2}{\left(a+1\right)^2+\left(a+1\right)a+a^2}=\frac{19}{49}\\ \Leftrightarrow\frac{a^2+a+1}{3a^2+3a+1}=\frac{19}{49}\)
\(\Leftrightarrow49\left(a^2+a+1\right)=19\left(3a^2+3a+1\right)\)
\(\Leftrightarrow49a^2+49a+49=57a^2+57a+19\)
\(\Leftrightarrow8a^2+8a-30=0\\ \left(2a+1\right)^2-4^2=0\\ \Leftrightarrow\left(2a+3\right)\left(2a+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=\frac{3}{2}\\a=-\frac{5}{2}\end{matrix}\right.\)( thỏa mãn điều kiện )
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{4041}{2}\\x=\frac{4033}{2}\end{matrix}\right.\)( thỏa mãn điều kiện )
vậy \(x\in\left\{\frac{4041}{2};\frac{4033}{2}\right\}\)
Cho số dương a, b, c thỏa mãn a+b=10.Tìm GTNN của :
a) A=\(\frac{5}{4ab}+\frac{1}{2\left(a^2+b^2\right)}\) b) B= \(a^4+b^4+\frac{3}{ab}\)