Xét pt: \(x^2-2mx+m^2-2m+3=0\) (1)
\(\Delta'=m^2-\left(m^2-2m+3\right)=2m-3\)
- Nếu \(2m-3< 0\Leftrightarrow m< \dfrac{3}{2}\Rightarrow\left(1\right)\) vô nghiệm hay hàm xác định trên R
- Nếu \(2m-3=0\Leftrightarrow m=\dfrac{3}{2}\Rightarrow\left(1\right)\) có nghiệm kép \(x=\dfrac{3}{2}\) hay TXĐ của hàm: \(D=R\backslash\left\{\dfrac{3}{2}\right\}\)
- Nếu \(2m-3>0\Leftrightarrow m>\dfrac{3}{2}\Rightarrow\left(1\right)\) có 2 nghiệm pb \(x_{1,2}=m\pm\sqrt{2m-3}\) hay TXĐ của hàm là: \(D=R\backslash\left\{m-\sqrt{2m-3};m+\sqrt{2m-3}\right\}\)