Bài 2. Các quy tắc tính đạo hàm

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Buddy

Bằng định nghĩa, tính đạo hàm của hàm sô \(y = \tan x\) tại điểm x bất kì, \(x \ne \frac{\pi }{2} + k\pi \,\,\,(k \in \mathbb{Z})\)

Quoc Tran Anh Le
22 tháng 9 2023 lúc 20:22

\(\begin{array}{l}f'({x_0}) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x) - f({x_0})}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\tan x - \tan {x_0}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\tan x - \tan {x_0}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\frac{{\sin x}}{{\cos x}} - \frac{{\sin {x_0}}}{{\cos {x_0}}}}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\frac{{\sin x\cos {x_0} - \sin {x_0}\cos x}}{{\cos x\cos {x_0}}}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{1}{{\cos x\cos {x_0}}} = \frac{1}{{{{\cos }^2}{x_0}}}\\ \Rightarrow f'(x) = (\tan x)' = \frac{1}{{{{\cos }^2}x}} = 1 + {\tan ^2}x\end{array}\)


Các câu hỏi tương tự
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết