Bài 3. Góc ở tâm, góc nội tiếp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Bạn Hùng làm một cái diều với thân diều là hình tứ giác S.AOB sao cho OS là đường phân giác của \(\widehat {AOB}\) và \(\widehat {ASB} = {106^o}\). Thanh tre màu xanh lá được uốn cong thành cung AB của đường tròn tâm O và SA, SB là hai tiếp tuyến của (O) (Hình 12). Tính số đo của \(\overset\frown{AB}\).

datcoder
25 tháng 10 lúc 23:27

Ta có SA, SB là hai tiếp tuyến của (O) nên OA \( \bot \) SA hay \(\widehat {OAS} = {90^o}\) và OB \( \bot \) SB hay \(\widehat {OBS} = {90^o}\).

Xét tứ giác SAOB có \(\widehat {ASB} + \widehat {OAS} + \widehat {AOB} + \widehat {OSB} = {360^o}\)

Suy ra \(\widehat {AOB} = {360^o} - \widehat {ASB} - \widehat {OAS} - \widehat {OSB} = {360^o} - {106^o} - {90^o} - {90^o} = {74^o}\)

Ta có sđ\(\overset\frown{AB}\) bị chắn bởi góc ở tâm \(\widehat {AOB}\) có số đo bằng 74o suy ra sđ\(\overset\frown{AB}\) = 74.