Gọi thời gian chảy riêng đầy bể của vòi 1 và vòi 2 lần lượt là x(giờ) và y(giờ)
(Điều kiện: x>0 và y>0)
Trong 1 giờ, vòi 1 chảy được \(\dfrac{1}{x}\left(bể\right)\)
Trong 1 giờ, vòi 2 chảy được \(\dfrac{1}{y}\left(bể\right)\)
Trong 1 giờ, hai vòi chảy được \(\dfrac{1}{15}\left(bể\right)\)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{15}\left(1\right)\)
Trong 5 giờ, vòi 1 chảy được \(\dfrac{5}{x}\left(bể\right)\)
Trong 3 giờ, vòi 2 chảy được \(3\cdot\dfrac{1}{y}=\dfrac{3}{y}\left(bể\right)\)
nếu vòi 1 chảy trong 5 giờ và vòi 2 chảy trong 3 giờ được 30% bể nước nên \(\dfrac{5}{x}+\dfrac{3}{y}=30\%=\dfrac{3}{10}\left(2\right)\)
Từ (1),(2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{15}\\\dfrac{5}{x}+\dfrac{3}{y}=\dfrac{3}{10}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{5}{y}=\dfrac{1}{3}\\\dfrac{5}{x}+\dfrac{3}{y}=\dfrac{3}{10}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{y}=\dfrac{1}{3}-\dfrac{3}{10}=\dfrac{1}{30}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{15}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=60\\\dfrac{1}{x}=\dfrac{1}{15}-\dfrac{1}{60}=\dfrac{3}{60}=\dfrac{1}{20}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=60\\x=20\end{matrix}\right.\left(nhận\right)\)
Vậy: Thời gian chảy riêng đầy bể của vòi 1 là 20 giờ, của vòi 2 là 60 giờ