Lời giải:
Đồ thị màu xanh lá là $y=4^x$
Đồ thị màu xanh dương là $y=\left(\frac{1}{4}\right)^x$
Lời giải:
Đồ thị màu xanh lá là $y=4^x$
Đồ thị màu xanh dương là $y=\left(\frac{1}{4}\right)^x$
Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ (dưới bình luận). Tìm tất cả các giá trị của tham số m để hàm số y= \(\left|f^2\left(x\right)-4f\left(x\right)+m\right|\) có 7 điểm cực trị (giải theo phương pháp ghép trục)
Tính đạo hàm của hàm số sau:
a) \(y=ln\left(1+\sqrt{3x-1}\right)\)
b) \(y=log\left(2sin^2x-1\right)\)
c) \(y=3^{x^3+3x+1}e^x\)
Bài 1: Cho a, b, c > 1. CMR: \(a^{\log_bc}+b^{\log_ca}+c^{\log_ab}\ge3\sqrt[3]{abc}\)
Bài 2: Cho các số x, y, z > 0 thoả mãn: \(\dfrac{x\left(y+z-x\right)}{logx}=\dfrac{y\left(z+x-y\right)}{logy}=\dfrac{z\left(x+y-z\right)}{logz}\). CMR: xy.yx = yz.zy = xz.zx
Bài tập 2: Tính đạo hàm của các hàm số:
a, y = 2\(xe^x\) + 3sin2x b, y = \(5x^2\) - \(2^x\)cosx
c, y = \(\frac{x+1}{3^x}\)
Tìm TXĐ:
a) y=\(\left(1-x\right)^{\dfrac{-1}{3}}\)
b) \(y=\sqrt{\log_{0,5}\dfrac{2x+1}{x+5}-2}\)
c) \(y=\log_{10}\sqrt{x^2-x-12}\)
d) \(y=\sqrt{\log_{10}x-1+\log_{10}x+1}\)
Cho x, y là các số thực dương thảo mãn\(\log_9x=\log_6y=\log_4\left(2x+y\right)\) Tính giá tri của \(\frac{x}{y}\)?
Cho x, y là các số thực dương thỏa mãn log9 x = log6 y = log4 \(\left(\dfrac{x+y}{6}\right)\). Tính tỷ số \(\dfrac{x}{y}\)
Cho \(\left\{{}\begin{matrix}x;y;z>=0\\x+y+z=2\end{matrix}\right.\) CMR \(\dfrac{1}{x^2-xy+y^2}+\dfrac{1}{y^2-yz+z^2}+\dfrac{1}{z^2-xz+x^2}\ge3\)
cho hai số thực a,b thỏa mãn 0<a<b<1 và biểu thức P=\(\log_{\frac{a}{b}}\sqrt{a}-4lo\log_a\left(a+\frac{b}{4}\right)\) đạt giá trị nhỏ nhất. Tính S=a+b