Kẻ \(AP\perp SC\)
Dễ dàng chứng minh \(SC\perp\left(AHK\right)\) \(\Rightarrow AP\in\left(AHK\right)\)
\(\Delta SAB=\Delta SAD\Rightarrow\left\{{}\begin{matrix}SH=SK\\SB=SD\end{matrix}\right.\) \(\Rightarrow\frac{SH}{SB}=\frac{SK}{SD}\Rightarrow HK//BD\)
Mà \(BD\perp\left(SAC\right)\Rightarrow HK\perp\left(SAC\right)\)
Lại có \(\left(SAC\right)\perp\left(ABCD\right)\Rightarrow\) \(\widehat{CAP}\) là góc giữa (AHK) và (ABCD)
\(AC=a\sqrt{2}\) ; \(\frac{1}{AP^2}=\frac{1}{AC^2}+\frac{1}{SA^2}\Rightarrow AP=\frac{SA.AC}{\sqrt{SA^2+AC^2}}=a\)
\(\Rightarrow cos\widehat{CAP}=\frac{AP}{AC}=\frac{\sqrt{2}}{2}\Rightarrow\widehat{CAP}=45^0\)
(Hoặc tam giác SAC vuông cân tại A nên AP là đường cao đồng thời là phân giác \(\Rightarrow\widehat{CAP}=\frac{1}{2}\widehat{SAC}=\frac{1}{2}.90^0=45^0\) )