a: M nằm trên đường trung trực của AC nên MA=MC
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
TH1: M nằm giữa B và C
=>BM+CM=BC
=>MA+MB=BC=10cm
TH2: B,M,C không thẳng hàng
=>B,M,C tạo thành ΔBMC
Xét ΔMBC có MB+MC>BC
=>MB+MA>10
Do đó; MB+MA>=10
b: Vì \(MB+MA>=10\)
nên \(\left(MB+MA\right)_{min}=10\) khi MB+MC=10
=>MB+MC=BC
=>M nằm giữa B và C
=>M là giao điểm của xy với BC