Bài 8: Cho hàm số \(y=\sqrt{1-\left|2x^2+mx+m+15\right|}\)
Có bao nhiêu giá trị của m để hàm số xác định trong khoảng [1,3]
Bài 9: Cho hàm số \(y=\dfrac{2mx+4}{\sqrt{x^2+2mx+2018m+2019}}+\sqrt{mx^2+2mx+2020}\). Gọi S là tập hợp các giá trị nguyên của m để hàm số xác định trên R. Hỏi tập S có bao nhiêu phần tử?
Bài 12:
Tìm các giá trị của tham số m để hàm số \(y=mx^2+2\left(m-1\right)x+2m+1\) nghịch biến trên (-1;2)
Bài 12. Tìm các giá trị của tham số m để hàm số \(y=mx^2+2\left(m-1\right)x+2m+1\) nghịch biến trên (-1;2)
Cho hàm số y=\(\left\{{}\begin{matrix}\dfrac{2x-3}{x-1}khix\ge2\\x^3-3xkhĩ< 2\end{matrix}\right.\) Khẳng định nào sau đây là khẳng định sai?
A.Tập hợp xác định của hàm số là R
B. Tập xác định của hàm số là R\\(\left\{1\right\}\)
C. Giá trị của hàm số tại x=2 bằng 1
D. Giá trị của hàm số tại x=1 bằng -2
Tìm tập xác định của hàm số
y = \(\sqrt{x+8+2\sqrt{x+7}}+\dfrac{1}{1-x}\)
y= \(\sqrt{\sqrt{x^2+2x+2}-\left(x+1\right)}\)
Cho hàm số \(y=\dfrac{\sqrt{m+1}}{3x^2-2x+m}\)
Tìm m để hàm số xác định trên toàn bộ trục số.
Bài 4. Xác định a để tập xác định của hàm số \(y=\sqrt{2x-a}+\sqrt{2a-1-x}\) là một đoạn có độ dài bằng 1.
1. Cho y=\(\sqrt{2x-m}\) . Tìm m để hàm số xác định trên [2;+∞)