Bài 7: cho tam giác ABC, kê AH ⊥ BC tại H, (H nằm giữa B và và C). Hãy tính các cạnh AB, AC và chứng minh tam giác ABC vuông tại A nếu biết:
1) AH = 12cm, BH = 9cm, CH = 18cm
2) AH = 24cm, BH = 32cm, CH = 18cm
3) AH = 2cm, BH = 1cm, CH = 4cm
4) AH = √3cm, BH = 1cm, CH = 3cm
5) AH = 1cm, BH = 1cm, CH = 1cm
6) AH = 4cm, BH = 1cm, CH = 16cm
7) AH = 10cm, BH = 25cm, CH = 4cm
8) AH = √20cm, BH = 4cm, CH = 5cm
9) AH = √2cm, BH = √2cm, CH = √2cm
10) AH = 4cm, BH = √2cm, CH = √2cm
Câu 1 :
Xét \(\Delta AHC\) có :
\(\widehat{H}=90^o\left(AH\perp BC-gt\right)\)
=> \(\Delta AHC\) vuông tại H
Ta có : \(AC^2=AH^2+HC^2\) (Định lí PYTAGO)
=> \(AC^2=12^2+18^2=325\)
=> \(AC=\sqrt{325}\)
Xét \(\Delta ABH\) có :
\(\widehat{AHB}=90^o\left(AH\perp BC-gt\right)\)
=> \(\Delta ABH\) vuông tại H
Ta có : \(AB^2=AH^2+BH^2=12^2+9^2=225\)
=> \(AB=\sqrt{225}=15\left(cm\right)\)
Câu 2 :
Xét \(\Delta AHC\) vuông tại H (cmt) có :
\(AC^2=AH^2+HC^2=24^2+18^2=900\) (Định lí PITAGO)
=> \(AC=\sqrt{900}=30\left(cm\right)\)
Xét \(\Delta ABH\perp H\left(cmt\right)\) có :
\(AB^2=AH^2+BH^2=24^2+32^2=1600\) (định lí PITAGO)
=> \(AB=\sqrt{1600}=40\left(cm\right)\)
Câu 3 :
Xét \(\Delta AHC\) vuông tại H (cmt) có :
\(AC^2=AH^2+HC^2=2^2+4^2=20\) (Định lí PITAGO)
=> \(AC=\sqrt{20}\)
Xét \(\Delta ABH\perp H\left(cmt\right)\) có :
\(AB^2=AH^2+BH^2=2^2+1^2=5\)(Định lí PITAGO)
=> \(AB=\sqrt{5}\)
Câu 4 :
Xét \(\Delta AHC\) vuông tại H (cmt) có :
\(AC^2=AH^2+HC^2=\left(\sqrt{3}\right)^2+4^2=19\)(Định lí PITAGO)
=> \(AC=\sqrt{19}\)
Xét \(\Delta ABH\perp H\left(cmt\right)\) có :
\(AB^2=AH^2+BH^2=\left(\sqrt{3}\right)^2+1^2=4\)(Định lí PITAGO)
=> \(AB=\sqrt{4}=2\)
Câu 5 :
Xét \(\Delta AHC\) vuông tại H (cmt) có :
\(AC^2=AH^2+HC^2=1^2+1^2=1\)(Định lí PITAGO)
=> \(AC=\sqrt{1}=1\)
Xét \(\Delta ABH\perp H\left(cmt\right)\) có :
\(AB^2=AH^2+BH^2=1^2+1^2=1\) (Định lí PITAGO)
=> \(AB=\sqrt{1}=1\)
CÁC CÂU SAU LÀM TƯƠNG TỰ NHÉ !