§5. Dấu của tam thức bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Khánh Linh

Bài 4 Xét dấu biểu thức sau

1 , \(f\left(x\right)=x^2-3x-2-\frac{8}{x^2-3x}\)

2 , \(f\left(x\right)=\frac{1}{x+1}-\frac{1}{x}-\frac{1}{2}\)

3 , \(f\left(x\right)=\frac{x^2-4x+3}{3-2x}-1+x\)

4 , \(f\left(x\right)=\frac{x^2-1}{\left(x^2-3\right)\left(-3x^2+2x+8\right)}\)

5 , \(f\left(x\right)=x^4-5x^2+2x+3\)

6 , \(f\left(x\right)=\frac{x^2+4x+15}{x^2-1}-\frac{x-3}{x+1}-\frac{x-2}{1-x}\)

Nguyễn Việt Lâm
14 tháng 3 2020 lúc 22:30

1.

\(f\left(x\right)=\frac{\left(x^2-3x\right)^2-2\left(x^2-3x\right)-8}{x^2-3x}=\frac{\left(x^2-3x-4\right)\left(x^2-3x+2\right)}{x^2-3x}\)

\(f\left(x\right)=\frac{\left(x+1\right)\left(x-1\right)\left(x-2\right)\left(x-4\right)}{x\left(x-3\right)}\)

Vậy:

\(f\left(x\right)\) ko xác định tại \(x=\left\{0;3\right\}\)

\(f\left(x\right)=0\Rightarrow x=\left\{-1;1;2;4\right\}\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< -1\\0< x< 1\\2< x< 3\\x>4\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}-1< x< 0\\1< x< 2\\3< x< 4\end{matrix}\right.\)

2.

\(f\left(x\right)=\frac{2x-2\left(x+1\right)-x\left(x+1\right)}{2x\left(x+1\right)}=\frac{-x^2-x-2}{2x\left(x+1\right)}\)

Vậy:

\(f\left(x\right)\) ko xác định tại \(x=\left\{-1;0\right\}\)

\(f\left(x\right)>0\Rightarrow-1< x< 0\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< -1\\x>0\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
14 tháng 3 2020 lúc 22:37

3.

\(f\left(x\right)=\frac{x^2-4x+3+\left(x-1\right)\left(3-2x\right)}{3-2x}=\frac{-x^2+x}{3-2x}=\frac{x\left(1-x\right)}{3-2x}\)

Vậy:

\(f\left(x\right)\) ko xác định tại \(x=\frac{3}{2}\)

\(f\left(x\right)=0\Rightarrow x=\left\{0;1\right\}\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}0< x< 1\\x>\frac{3}{2}\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< 0\\1< x< \frac{3}{2}\end{matrix}\right.\)

4.

\(f\left(x\right)=\frac{\left(x-1\right)\left(x+1\right)}{\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\left(2-x\right)\left(3x+4\right)}\)

Vậy:

\(f\left(x\right)\) ko xác định tại \(x=\left\{\pm\sqrt{3};-\frac{4}{3};2\right\}\)

\(f\left(x\right)=0\Rightarrow x=\pm1\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}-\sqrt{3}< x< -\frac{4}{3}\\-1< x< 1\\\sqrt{3}< x< 2\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< -\sqrt{3}\\-\frac{4}{3}< x< -1\\1< x< \sqrt{3}\\x>2\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
14 tháng 3 2020 lúc 22:50

5.

\(f\left(x\right)=x^4-x^3-x^2+x^3-x^2-x-3x^2+3x+3\)

\(=x^2\left(x^2-x-1\right)+x\left(x^2-x-1\right)-3\left(x^2-x-1\right)\)

\(=\left(x^2+x-3\right)\left(x^2-x-1\right)\)

Vậy:

\(f\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=\frac{-1\pm\sqrt{13}}{2}\\x=\frac{1\pm\sqrt{5}}{2}\end{matrix}\right.\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< \frac{-1-\sqrt{13}}{2}\\\frac{1-\sqrt{5}}{2}< x< \frac{1+\sqrt{5}}{2}\\x>\frac{-1+\sqrt{13}}{2}\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}\frac{-1-\sqrt{13}}{2}< x< \frac{1-\sqrt{5}}{2}\\\frac{1+\sqrt{5}}{2}< x< \frac{-1+\sqrt{13}}{2}\end{matrix}\right.\)

6.

\(f\left(x\right)=\frac{x^2+4x+15-\left(x-3\right)\left(x-1\right)+\left(x-2\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{x^2+7x+10}{\left(x-1\right)\left(x+1\right)}=\frac{\left(x+5\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)}\)

Vậy:

\(f\left(x\right)\) ko xác định khi \(x=\pm1\)

\(f\left(x\right)=0\Rightarrow x=\left\{-2;-5\right\}\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< -5\\-2< x< -1\\x>1\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}-5< x< -2\\-1< x< 1\end{matrix}\right.\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Khánh Linh
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
hello hello
Xem chi tiết
Anh Vũ
Xem chi tiết
Trang Nana
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Ngọc Ánh
Xem chi tiết
Anh Vũ
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết