\(a,\left(2x+1\right)^2-4\left(x+2\right)^2=9\\ \Leftrightarrow4x^2+4x+1-4\left(x^2+4x+4\right)-9=0\\ \Leftrightarrow4x^2-4x^2+4x-16x+1-16-9=0\\ \Leftrightarrow-12x=24\\ \Leftrightarrow x=\dfrac{24}{-12}=-2\\ b,\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\\ \Leftrightarrow x^2+6x+9-\left(x^2+4x-32\right)=1\\ \Leftrightarrow x^2-x^2+6x-4x=1-9-32\\ \Leftrightarrow2x=-40\\ \Leftrightarrow x=-20\\ c,3\left(x+2\right)^2+\left(2x-1\right)^2-7\left(x+3\right)\left(x-3\right)=36\\ \Leftrightarrow3\left(x^2+4x+4\right)+\left(4x^2-4x+1\right)-7\left(x^2-9\right)=36\\ \Leftrightarrow3x^2+12x+12+4x^2-4x+1-7x^2+63=36\\ \Leftrightarrow3x^2+4x^2-7x^2+12x-4x=36-12-1-63\\ \Leftrightarrow8x=-40\\ \Leftrightarrow x=\dfrac{-40}{8}=-5\)