a, cho A = \(\dfrac{\sqrt{x+1}}{\sqrt{x-1}}\). chứng minh vs x = \(\dfrac{16}{9}\) và x = \(\dfrac{25}{9}\) thì A có giá trị là 1 số nguyên
Giúp mik 2 câu này nhé mí bạn . ^^
e) \(\left[\sqrt{64}+2\sqrt{\left(-3\right)^2}-7.\sqrt{1,69}+3.\sqrt{\dfrac{25}{16}}\right]:\left(5\sqrt{\dfrac{2}{3}}\right)^2\)
d) \(\left[-\sqrt{2,25}+4\sqrt{\left(-2,15\right)^2}-\left(3\sqrt{\dfrac{7}{6}}\right)^2.\sqrt{1\dfrac{9}{16}}\right]\)
Nguyễn Thị Hồng Nhung Nguyễn Thanh Hằng Nguyễn Huy Tú Linh Nguyễn Toshiro Kiyoshi Đời về cơ bản là buồn... cười!!!
a, cho A = \(\dfrac{\sqrt{x+1}}{\sqrt{x-3}}\). tìm x để A có giá trị nguyên ( x ϵ Z)
b, Thực hiện phép tính: {[(2\(\sqrt{2}\))\(^2\) : 2,4] x [5,25 : (\(\sqrt{7}\))\(^2\)]} : {[2\(\dfrac{1}{7}\) : \(\dfrac{\left(\sqrt{5}\right)^2}{7}\)] : [2\(^2\) : \(\dfrac{\left(2\sqrt{2}\right)^2}{\sqrt{81}}\)]}
B1
a,\(\dfrac{7}{3}\).\(\dfrac{37}{5}\)-\(\dfrac{7}{3}\).\(\dfrac{32}{5}\)
b, 3:+\(\left(-\dfrac{3}{2}\right)^2\)+ \(\dfrac{1}{9}\).\(\sqrt{36}\)
c,\(\left(-2\right)^2\) + \(\sqrt{36}\)-\(\sqrt{9}\)+\(\sqrt{25}\)
d, \(\left(-\dfrac{2}{3}+\dfrac{3}{7}\right)\) : \(\left(-\dfrac{1}{3}+-\dfrac{4}{7}\right):\dfrac{4}{5}\)
B2
a, \(\dfrac{3}{4}\)+\(\dfrac{1}{4}\):x = \(\dfrac{1}{2}\)
b, -8 + 2 . |2x-3| =4
c, |x - \(\dfrac{1}{3}\)|- \(\sqrt{\dfrac{1}{6}}\)=\(\sqrt{\dfrac{1}{9}}\)
Câu 3.Thực hiện phép tính:
a)\(\sqrt{25}-3\sqrt{\dfrac{4}{9}}\)
b)\(\left(2-\dfrac{5}{3}\right):\left(\dfrac{2}{7}+\dfrac{5}{21}-1\right)\)
2.TÍNH A) \(\left(\sqrt{2\dfrac{18}{25}-\sqrt{1,21}}\right)\left(1,21+2\dfrac{14}{25}+\sqrt{1,21.2\dfrac{14}{25}}\right)\) B)
Tính giá trị biểu thức M=a+b+c
cho bít \(\dfrac{a+16}{9}=\dfrac{b-25}{16}=\dfrac{c+9}{25}\)
Và 2a3-1=15
tính hợp lý
a, A = \(\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\left(\dfrac{2}{7}\right)^2-\dfrac{4}{343}}\)
b, M = 1 - \(\dfrac{5}{\sqrt{196}}\) - \(\dfrac{5}{\left(2\sqrt{21}\right)^2}\) - \(\dfrac{\sqrt{25}}{204}\) - \(\dfrac{\left(\sqrt{5}\right)^2}{374}\)
\(a)(x^2-3)(2x^2-\dfrac{9}{8})(\sqrt{|x|}-\sqrt{\dfrac{5}{2}})=0\)
\(b)x-5\sqrt{x}=0\)