Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Neet

Bài 4: Cho các số thực a;b;c;d thỏa a+b+c+d=2. Chứng minh :

\(\dfrac{a}{a^2-a+1}+\dfrac{b}{b^2-b+1}+\dfrac{c}{c^2-c+1}+\dfrac{d}{d^2-d+1}\le\dfrac{8}{3}\)

Lightning Farron
16 tháng 3 2018 lúc 23:09

Đặt \(\left\{{}\begin{matrix}x=a-\dfrac{1}{2}\\y=b-\dfrac{1}{2}\\z=c-\dfrac{1}{2}\\t=d-\dfrac{1}{2}\end{matrix}\right.\)\(\Rightarrow x+y+z+t=0\)

\(BDT\Leftrightarrow\dfrac{2\left(2x+1\right)}{4x^2+3}+\dfrac{2\left(2y+1\right)}{4y^2+3}+\dfrac{2\left(2z+1\right)}{4z^2+3}+\dfrac{2\left(2t+1\right)}{4t^2+3}\le\dfrac{8}{3}\)

\(\Leftrightarrow\dfrac{\left(2x-1\right)^2}{4x^2+3}+\dfrac{\left(2y-1\right)^2}{4y^2+3}+\dfrac{\left(2z-1\right)^2}{4z^2+3}+\dfrac{\left(2t-1\right)^2}{4t^2+3}\ge\dfrac{4}{3}\left(1\right)\)

Ta có: \(4x^2+3=3x^2+3+\left(y+z+t\right)^2\le3x^2+3+3\left(y^2+z^2+t^2\right)\)

\(=3\left(x^2+y^2+z^2+t^2+1\right)\)

\(\Rightarrow\dfrac{\left(2x-1\right)^2}{4x^2+3}\ge\dfrac{\left(2x-1\right)^2}{3\left(x^2+y^2+z^2+t^2+1\right)}\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(VT_{\left(1\right)}\ge\dfrac{\left(2x-1\right)^2+\left(2y-1\right)^2+\left(2z-1\right)^2+\left(2t-1\right)^2}{3\left(x^2+y^2+z^2+t^2+1\right)}\)

\(=\dfrac{4\left(x^2+y^2+z^2+t^2+1\right)-4\left(x+y+z+t\right)}{3\left(x^2+y^2+z^2+t^2+1\right)}\)

\(=\dfrac{4\left(x^2+y^2+z^2+t^2+1\right)}{3\left(x^2+y^2+z^2+t^2+1\right)}=\dfrac{4}{3}=VP_{\left(1\right)}\)

Feed Là Quyền Công Dân
6 tháng 2 2018 lúc 18:08

a=b=c=d=\(\frac{1}{2}\) Uct xem

Nguyễn Huy Thắng
16 tháng 3 2018 lúc 22:30

so ez


Các câu hỏi tương tự
vung nguyen thi
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Thiên Yết
Xem chi tiết
Anh Huy Nguyễn Hoàng
Xem chi tiết
Trần Minh Tâm
Xem chi tiết
Neet
Xem chi tiết
Nguyen Ha
Xem chi tiết
Kinder
Xem chi tiết
vvvvvvvv
Xem chi tiết