a) Ta có:
\(\left\{\begin{matrix}AB\perp AC\\KH\perp AC\end{matrix}\right.\) => AB // HK
b) Vì KH \(\perp\) AC nên \(\widehat{AHK}\) = \(\widehat{AHI}\) = 90o
Xét \(\Delta\)AHK và \(\Delta\)AHI có:
HK = HI (gt)
\(\widehat{AHK}\) = \(\widehat{AHI}\) (chứng minh trên)
AH chung
=> \(\Delta\)AHK = \(\Delta\)AHI (c.g.c)
=> AK = AI (2 cạnh tương ứng)
nên \(\Delta\)AKI cân tại A.
c) Vì AB // HK (câu a)
nên \(\widehat{BAK}\) = \(\widehat{AKI}\) (so le trong) (1)
Vì \(\Delta\)AKI cân (câu b)
nên \(\widehat{AKI}\) = \(\widehat{AIK}\) (góc đáy) (2)
Từ (1) và (2) suy ra \(\widehat{BAK}\) = \(\widehat{AIK}\).
d) Vì \(\Delta\)AHK = \(\Delta\)AHI (câu b)
nên \(\widehat{IAC}\) = \(\widehat{KAC}\) (2 góc tương ứng)
Xét \(\Delta\)AIC và \(\Delta\)AKC có:
AI = AK (câu b)
\(\widehat{IAC}\) = \(\widehat{KAC}\) (cm trên)
AC chung
=> \(\Delta\)AIC = \(\Delta\)AKC (c.g.c)