Δ=(2m+2)^2-4(2m+100)
=4m^2+8m+4-8m-400
=4m^2-396
Để pt có 2 nghiệm pb thì 4m^2-396>0
=>m^2>99
=>m>3 căn 11 hoặc m<-3căn 11
Δ=(2m+2)^2-4(2m+100)
=4m^2+8m+4-8m-400
=4m^2-396
Để pt có 2 nghiệm pb thì 4m^2-396>0
=>m^2>99
=>m>3 căn 11 hoặc m<-3căn 11
Cho phương trình x2 - (m+2) x + 2m = 0 (1) (Với m là tham số, ẩn x).
a) Giải phương trình (1) với m = 1.
b) Tìm giá trị của m để phương trình (1) có hai nghiệm phân biệt ; thỏa mãn \(x_1\left(m+2\right)+x_2^2\le3\) .
cho phương trình x2 - 2 (m - 1)x - 2m + 5 = 0 (m là tham số)
tính các giá trị của m để phương trình có 2 nghiệm phân biệt x1 , x2 (x1 < x2) thỏa mãn x1 - x2 = -2
Bài 40: Cho phương trình x2 – 20x + m + 5 = 0 (*) với m là tham số
a) Giải phương trình (*) với m = 14
b) Tìm m để phương trình (*) có hai nghiệm phân biệt x1, x2 là các số nguyên tố
Bài 1: Cho phương trình \(x^2+2\left(m+1\right)x+m^2+4m+3=0\) (m là tham số). Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 sao cho A=x1x2-2x1-2x2 đạt GTNN.
Bài 2: Cho (O;R) và AB là đường kính cố định của (O). Đường thẳng d là tiếp tuyến của (O) ở B. Kẻ MN là đường kính của (O) sao cho MN không vuông góc với AB ( M khác A,B). Các đường thẳng AM, AN cắt d theo thứ tự tại C,D. Gọi I là trung điểm của CD và H là giao điểm của Ai và MN.
a) CM AM.AC (không đổi) không phụ thuộc vào vị trí của đường kính MN.
b) CMR tứ giác CMND nội tiếp.
c) CMR điểm H luôn thuộc một đường tròn cố định khi MN thay đổi.
d) Gọi E, F là trung điểm BD và BC. Xác định vị trí của MN để diện tích của tứ giác MNEF là nhỏ nhất.
cho phương trình x^2-mx+m-1=0(m là tham số). Tìm các giá trị của m để phương trình có hai nghiệm phân biệt x1,x2 và thỏa mãn x1^2+x2^2=x1+x2
câu 1 :cho phương trình x^2 + 2x + m - 1 = 0, với m là tham số
a.giải phương trình với m=1
b.tìm giá trị của m để phương trình đã cho có hai nghiệm phân biệt x1 và x2 thỏa mãn x1^3 + x2^3 - 6x1x2 = 4(m-m^2)
Cho phương trình x2 - (m + 2)x + m + 8 = 0 (1) với m là tham số
a.Giải phương trình (1) khi m = -8
b.Tìm các giá trị của m để phương trình (1) có hai nghiệm dương phân biệt x1,x2 thỏa mãn x13 - x2 = 0
Cho phương trình x2 - 2(m + 1)x + 2m - 3 = 0
với m là tham số.Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m.
Cho phương trình: x2 - (m+3)x + m - 1 = 0 ( ẩn x, tham số m). Tìm m để phương trình có 2 nghiệm phân biệt x1; x2 sao cho x1 < \(\dfrac{-1}{4}\) < x2