Cho \(b^2=ac\:;\:c^2=bd\) a,b,c,d khác 0
Chứng minh \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Bài 1: Cho tỉ lệ thức
Tính tỉ số
Bài 2: a, Tìm x,y,z biết:
b, Cho
Chứng minh rằng:
Bài 3: a, Cho
Chứng minh rằng:
b, Chứng minh rằng nếu thì
Cho tỉ lệ thức : \(\frac{a}{b}=\frac{c}{d}\) . Chứng minh rằng : \(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3+b^3}{c^3+d^3}\)
cho a, b, c, d chứng minh \(b^2=a.c;c^2=b.d\) chứng minh \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Cho 4 số a; b; c; d \(\ne\) 0 thỏa mãn:
\(b^2=a.c\) ; \(c^2=b.d\) ; \(b^3+c^3+d^3\ne0\)
chứng minh rằng: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\).
Cho tỉ lệ thức \(\frac{a}{b}\)=\(\frac{c}{d}\)
Chứng minh rằng: a) \(\frac{2a+3b}{2a-3b}\)=\(\frac{2c+3d}{2c-3d}\)
b)\(\frac{ab}{cd}\)=\(\frac{a^2-b^2}{c^2-d^2}\)
c)\(\left(\frac{a+b}{c+d}\right)^2\)=\(\frac{a^2+b^2}{c^2+d^2}\)
Làm bài tập trên với 3 phương pháp chứng minh tỉ lệ thức dưới đây(mỗi câu dùng cả 3):
1. Chứng minh hai tỉ số có cùng một giá trị.
2. Chứng minh tích các ngoại tỉ bằng tích các trung tỉ.
3. Biến đổi từ tỉ lệ thức cho trước thành tỉ lệ thức cần phải chứng minh.
Giúp mình với!!!!!!!!!!!!!!!!!!!!!!!!!!!!!![]()
Cho \(abcd\ne0;b^2=ca;c^2=bd\). Chứng minh tỉ lệ thức: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Câu 1: Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC=BD
a) Chứng minh: AD=BC
b) Gọi E là giao điểm của AD và BC. Chứng minh: \(\Delta EAC\) = \(\Delta EBD\)
c) Chứng minh: OE là tia phân giác của góc xOy
Câu 2: A=\(\frac{1}{3}\)+\(\left(\frac{1}{3}\right)^2\)+\(\left(\frac{1}{3}\right)^3\)+...+\(\left(\frac{1}{3}\right)^{2016}\)
Chứng minh rằng: A<\(\frac{1}{2}\)
Bài 1 . Cho \(\frac{a}{b}\)=\(\frac{b}{c}=\frac{c}{d}\)
Chứng minh \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
Bài 2 . Tìm A biết A = \(\frac{a}{b+c}=\frac{c}{a+b}=\frac{b}{c+a}\)
Bài 3 . tìm x, y, z biết\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và x-2y +3z =-10
Giúp mình nha mai mình có tiết kiểm tra rùi ![]()
![]()