Giải:
Đặt \(\frac{a}{b}=\frac{b}{c}=k\Rightarrow a=bk,c=dk\)
a) Ta có: \(\left(\frac{a-b}{c-d}\right)^2=\left(\frac{bk-b}{dk-d}\right)^2=\left[\frac{b\left(k-1\right)}{d\left(k-1\right)}\right]^2=\left(\frac{b}{d}\right)^2\) (1)
\(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2}{d^2}=\left(\frac{b}{d}\right)^2\) (2)
Từ (1) và (2) \(\Rightarrow\left(\frac{a-b}{c-d}\right)^2=\frac{ab}{cd}\left(đpcm\right)\)
b) Ta có: \(\left(\frac{a+b}{c+d}\right)^3=\left(\frac{bk+b}{dk+d}\right)^3=\left[\frac{b\left(k+1\right)}{d\left(k+1\right)}\right]^3=\left(\frac{b}{d}\right)^3\) (1)
\(\frac{a^3-b^3}{c^3-d^3}=\frac{\left(bk\right)^3-b^3}{\left(dk\right)^3-d^3}=\frac{b^3.k^3-b^3}{d^3.k^3-d^3}=\frac{b^3\left(k^3-1\right)}{d^3\left(k^3-1\right)}=\frac{b^3}{d^3}=\left(\frac{b}{d}\right)^3\) (2)
Từ (1) và (2) \(\Rightarrow\left(\frac{a+b}{c+d}\right)^3=\frac{a^3-b^3}{c^3-d^3}\left(đpcm\right)\)