Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Gọi D, E lần lượt là hình chiếu của H trên AB, AC và O, M, N lần lượt là trung điểm của AH, BH, CH.
a) CM: DM song song với EN và BH.AN=BO.AH
b) Gọi I là trực tâm của tam giác AMN. CM: Diện tích tứ giác BMIO gấp 3 lần diện tích tam giác MHI.
c) Giả sử khoảng cách từ điểm A đến cạnh BC không đổi thì tam giác ABC phải thỏa mãn điều kiện gì để diện tích tam giác AMN nhỏ nhất?
Câu 10: Cho tam giác ABC, đường cao AH, cạnh BC=a. Hình chữ nhật MNPQ có các đỉnh nằm trên các cạnh hình tam giác ABC.(M thuộc AB,N thuộc AC, P và Q thuộc BC). Hãy xác định vị trí của M trên cạnh AB sao cho diện tích hình chữ nhật MNPQ đạt giá trị lớn nhật, tính giá trị lớn nhất ấy.
Cho tam giác ABC vuông cân tại A có BC= 36cm. Vẽ hình chữ nhật MNPQ sao cho M thuộc AB; N,P thuộc BC; Q thuộc AC. Diện tích lớn nhất của MNPQ là ...........
Mn giải giùm mình ạ!!!
Cho tam giác ABC đều, G là trọng tâm của tam giác . Gọi M là 1 điểm bất kỳ thuộc BC, I là trung điểm của AM. Kẻ AH vuông góc với BC. Gọi D và E lần lượt là hình chiếu của MN trên AB và AC
a) Tứ giác DIEH là hình gi? Vì sao?
b) Chứng minh: IH, DE, MG đồng quy
bài 1:cho tứ giác ABCD có 2 đường chéo ac và bd vuông góc với nhau . gọi m,n,p,q lần lượt là tđ của các cạnh ab,bc,cd,da
a) mnpq là hình j?
b)mnpq là hình vuôn thì abcd cần đk j?
c)cho ac=6cm,bd=8cm. tính diện tích mnpq
bài 2: Cho abc vuông tại a . lấy d thuộc cạnh bc, e là tđ của ac, f đối xứng với d qua e . cm afcd là hbh
bài 3: cho hình thoi abcd . gọi o là giao của 2 đường chéo . qua b vẽ đường thẳng song song với ac, qua c vẽ đường thẳng song song bd . 2 đường thẳng cắt tại k
a) cmr obkc là hcn
b) cmr ab=ok
Cho tam giác ABC vuông ở A, đường cao AH. Gọi I và K lần lượt là hình chiếu vuông góc của H lên các cạnh AB và AC. Gọi O là giao điểm của Ah và IK. Hạ KD vuông góc với BC tại D. CM: Ba đường thẳng AD, CO và HK đồng quy
Cho tam giác ABC vuông ở A, đường cao AH. Gọi I và K lần lượt là hình chiếu vuông góc của H lên các cạnh AB và AC. Gọi O là giao điểm của Ah và IK. Hạ KD vuông góc với BC tại D. CM: Ba đường thẳng AD, CO và HK đồng quy