Bài 2: Hệ hai phương trình bậc nhất hai ẩn. Luyện tập

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Linh Bùi

Bài 2: Cho hpt: \(\left\{{}\begin{matrix}2x+y=5m-1\\x-2y=m\end{matrix}\right.\)

Tìm m để hpt có nghiệm thảo mãn x- 2y= -2

(mink đag cần gấp)

Nguyễn Lê Phước Thịnh
1 tháng 3 2021 lúc 12:55

Ta có: \(\left\{{}\begin{matrix}2x+y=5m-1\\x-2y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=5m-1\\x=m+2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\left(m+2y\right)+y=5m-1\\x=m+2y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m+4y+y-5m=-1\\x=m+2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5y-3m=-1\\x=m+2y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5y=3m-1\\x=m+2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3m-1}{5}\\x=m+2\cdot\dfrac{3m-1}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5m}{5}+\dfrac{6m-2}{5}=\dfrac{11m-2}{5}\\y=\dfrac{3m-1}{5}\end{matrix}\right.\)

Để hệ phương trình có nghiệm thỏa mãn \(x^2-2y^2=-2\) thì \(\left(\dfrac{11m-2}{5}\right)^2-2\cdot\left(\dfrac{3m-1}{5}\right)^2=-2\)

\(\Leftrightarrow\dfrac{121m^2-44m+4}{25}-2\cdot\dfrac{9m^2-6m+1}{25}=-2\)

\(\Leftrightarrow\dfrac{121m^2-44m+4}{25}-\dfrac{18m^2-12m+2}{25}=-2\)

\(\Leftrightarrow\dfrac{103m^2-32m+2}{25}=\dfrac{-50}{25}\)

\(\Leftrightarrow103m^2-32m+2+50=0\)

\(\Leftrightarrow103m^2-32m+52=0\)

\(\Delta=\left(-32\right)^2-4\cdot103\cdot52=-20400\)

Vì \(\Delta< 0\) nên phương trình vô nghiệm

Vậy: Không có giá trị nào của m để hệ phương trình có nghiệm thỏa mãn \(x^2-2y^2=-2\)


Các câu hỏi tương tự
Linh Bùi
Xem chi tiết
Linh Bùi
Xem chi tiết
Linh Bùi
Xem chi tiết
Linh Bùi
Xem chi tiết
Xích U Lan
Xem chi tiết
Xích U Lan
Xem chi tiết
Mỹ Hạnh
Xem chi tiết
Hoàng
Xem chi tiết
Toma Sou
Xem chi tiết