Bài 1:
a) n+4 chia hết cho n-13
=> n-13+17 chia hết cho n-13
=> 17 chia hết cho n-13
=> n-13 \(\in\) Ư(17) = {1;-1;17;-17}
=> n \(\in\) {14;12;30;-4}
Vì n \(\in\) N nên n \(\in\) {14;20;30}
b) n-5 chia hết cho n-11
=> n-11+6 chia hết cho n-11
=> 6 chia hết cho n-11
=> n-11 \(\in\) Ư(6) = {1;-1;2;-2;3;-3;6;-6}
=> n \(\in\) {12;10;13;9;14;8;17;5}
Bài 2:
Để \(\overline{34x5}\) chia hết cho 9
=> 3+4+x+5 chia hết cho 9
=> 12+x chia hết cho 9
=> x = 7
Bài 1:
Giải:
a) Ta có: \(n+4⋮n-13\)
\(\Rightarrow\left(n-13\right)+17⋮n-13\)
\(\Rightarrow17⋮n-3\)
\(\Rightarrow n-3\in\left\{1;-1;17;-17\right\}\)
+) \(n-3=1\Rightarrow n=4\)
+) \(n-3=-1\Rightarrow n=2\)
+) \(n-3=17\Rightarrow n=20\)
+) \(n-3=-17\Rightarrow n=-14\)
\(\Rightarrow n\in\left\{4;2;20;-14\right\}\)
Mà \(n\in N\)
\(\Rightarrow n\in\left\{4;2;20\right\}\)
b) Ta có: \(n-5⋮n-11\)
\(\Rightarrow\left(n-11\right)+6⋮n-11\)
\(\Rightarrow6⋮n-11\)
\(\Rightarrow n-11\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
\(n\in\left\{12;10;13;9;14;8;17;5\right\}\)
Bài 2:
Giải:
Để \(\overline{34x5}⋮9\Rightarrow12+x⋮9\Rightarrow x=6\)
Vậy \(x=6\)