Bài 1:So sánh
a,\(\left(-50\right)^{20}\)và \(2550^{10}\)
b, \(\left(-999\right)^{10}\)và \(999999^5\)
Bài 2:Tìm x thuộc Z để :\(\dfrac{x}{9}\)<\(\dfrac{4}{7}\)<\(\dfrac{x+1}{9}\)
Bài 3:Tìm cặp số nguyên a,b sao cho;
a,\(\dfrac{b}{5}\)+\(\dfrac{1}{10}\)=\(\dfrac{1}{a}\)
b, \(\dfrac{a}{4}\)-\(\dfrac{1}{2}\)=\(\dfrac{3}{b}\)
Bài 4:Rút gọn:
M=\(\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\dfrac{5^{10}.7^3-25^5.49^2}{\left(125:7\right)^9+5^9:\left(14\right)^3}\)
mk làm rùi nên mn k cần giúp nx đâu.Hihi
Bài 4:
Sửa đề: \(M=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\)
\(=\dfrac{2^{12}\cdot3^5-2^{12}\cdot3^4}{2^{12}\cdot3^6+2^{12}\cdot3^5}-\dfrac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot2^3\cdot7^3}\)
\(=\dfrac{2^{12}\cdot3^4\left(3-1\right)}{2^{12}\cdot3^5\left(3+1\right)}-\dfrac{5^{10}\cdot7^3\cdot\left(1-7\right)}{5^9\cdot7^3\cdot\left(1+2^3\right)}\)
\(=\dfrac{-2}{3\cdot4}-\dfrac{5\cdot\left(-6\right)}{9}=\dfrac{-1}{6}+\dfrac{30}{9}=\dfrac{-1}{6}+\dfrac{10}{3}=\dfrac{-1}{6}+\dfrac{20}{6}=\dfrac{19}{6}\)