\(C=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow3C=1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\)
\(\Rightarrow3C-C=\left(1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)\)
\(\Rightarrow2C=1-\dfrac{1}{3^{99}}\)
\(\Rightarrow C=\dfrac{1}{2}-\dfrac{1}{3^{88}.2}< \dfrac{1}{2}\)
Vậy \(C< \dfrac{1}{2}\)
\(C=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow3C=1+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}\)
\(\Rightarrow3C-C=1+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}-\dfrac{1}{3}-\dfrac{1}{3^2}-\dfrac{1}{3^3}-...-\dfrac{1}{3^{99}}\)
\(\Rightarrow2C=1-\dfrac{1}{3^{99}}\)
\(\Rightarrow C=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
Mà \(1-\dfrac{1}{3^{99}}< 1\)
\(\Rightarrow C< \dfrac{1}{2}\) ( đpcm )
\(C=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\)
\(3C=3\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)\)
\(3C=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}\)
\(3C-C=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^{99}}\right)\)\(2C=1-\dfrac{1}{3^{99}}\)
\(C=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(C=\dfrac{1}{2}-\dfrac{1}{3^{99}.2}\)
\(C< \dfrac{1}{2}\)
\(\rightarrowđpcm\)
\(\)