\(A=\dfrac{x-2}{3x+3}\) điều kiện xác định \(x\ne-1\)
a) \(A=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
b) \(A< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2>0\\3x+3< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2< 0\\3x+3>0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>2\\x< -1\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\x>-1\end{matrix}\right.\end{matrix}\right.\Rightarrow-1< x< 2\)