cho hình bình hành ABCD có góc D = 60 độ , CD = 2BC . gọi E và F theo thứ tự là trung điểm của AB và CD
a) cm DEBF là hình bình hành
b) tứ giác AEFD là hình gì ? vì sao ?
c) gọi M là giao điểm của DE và AF , N là giao điểm của CE và BF . c/m EMFN là hình chữ nhật
Cho hình bình hành ABCD, gọi O là giao điểm của 2 đường chéo và M,N lần lượt là trung điểm cuả AD,BC. BM và DN cắt AC lần lượt tại E và F.
a, Tứ giác BMDN là hình gì? Vì sao?
b, Chứng minh AE = EF = FC
c, Tính diện tích tam giác DBM, biết diện tích hình bình hành là 30 cm2
Giúp em với ạ
Cho hình bình hành ABCD có AB=2AD.Gọi E,F theo thứ tự là trung điểm của AB và CD.
a, Chứng minh: EBFD là hình bình hành.
b,Tứ giác AEFD là hình gì? Vì sao?
c,Chứng minh: AF vuông góc với DE.
d,Gọi M là giao điểm của AF và DE , N là giao điểm của BF và CE. Chứng minh: EF = MN
e,△ABC cần thêm điều kiện gì thì hình chữ nhật PACM là hình vuông?
Vẽ luông hình giúp e với ạ.E cảm ơnn
Cho hình bình hành ABCD, gọi O là giao điểm của hai đường chéo, E và F thứ tự là trung điểm của OD và OB.
1) Chứng minh: Tứ giác AECF là hình bình hành.
2) Tia AE cắt CD tại K, gọi H là trung điểm của KC. Chứng minh OH // CF.
3) Chứng minh : CF = 3EK
Cho hình bình hành ABCD có AB = 2AD. Gọi E và F theo thứ tự là trung điểm của AB và CD.
a) Các tứ giác AEFD, AECF là hình gì ? Vì sao ?
b) Gọi M là giao điểm của AF và DE, gọi N là giao điểm của BF và CE. Chứng minh rằng tứ giác EMFN là hình chữ nhật ?
c) Hình bình hành ABCD nói trên có thêm điều kiện gì thì EMFN là hình vuông ?
Bài 2. Cho hình bình hành ABCD. Gọi M, N theo thứ tự là trung điểm AB và CD.
a/ Chứng minh tứ giác AMCN là hình bình hành
b/ AN và CM cắt BD theo thứ tự tại E và F. Chứng minh DE = EF = FB
c/ Tìm điều kiện của hình bình hành ABCD để tứ giác MENF là hình chữ nhật
Cho hình bình hành ABCD (AD < AB), O là giao điểm hai đường chéo AC, BD. Gọi E, F lần lượt là hình chiếu của A và C trên BD.
a, Chứng minh tứ giác AECF là hình bình hành.
b, Gọi I là điểm đối xứng của A qua BD. Chứng minh EO là đường trung bình của tam giác AIC.
c, Chứng minh tứ giác CIDB là hình thang cân.
Bài 2. Cho hình bình hành ABCD có AD = 2AB, Â = 60 độ. Gọi E và F lần lượt là trung điểm của BC và AD
a) CM: AE vuông góc BF
b) CM tứ giác BFDC là hình thang cân
c) Lấy điểm M đối xứng của A qua B. CM tứ giác BMCD là hình chữ nhật
d) CM M, E, D thẳng hàng
Cho hình bình hành ABCD, O là giao điểm của hai đường chéo AC và BD. Gọi E và F theo thứ tự là trung điểm DB và OD a, Chứng minh AE song song với CF b, Gọi K là giao điểm của AE và DC chứng minh KC bằng 2DK