\(1=x+y\ge2\sqrt{xy}\Rightarrow xy\le\frac{1}{4}\Rightarrow\left\{{}\begin{matrix}\frac{1}{xy}\ge4\\-xy\ge-\frac{1}{4}\end{matrix}\right.\)
\(A=1+\frac{9}{x^2y^2}-3\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+x^3+y^3\)
\(A=1+\frac{9}{x^2y^2}-3\left(\frac{x^2+y^2}{x^2y^2}\right)+x^3+y^3\)
\(A=1+\frac{9}{x^2y^2}-3\left[\frac{\left(x+y\right)^2-2xy}{x^2y^2}\right]+\left(x+y\right)^3-3xy\left(x+y\right)\)
\(A=2+\frac{9}{x^2y^2}-3\left(\frac{1}{x^2y^2}-\frac{2}{xy}\right)-3xy\)
\(A=2+\frac{6}{\left(xy\right)^2}+\frac{6}{xy}-3xy\)
\(A\ge2+6.4^2+6.4-\frac{3.1}{4}=\frac{485}{4}\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)