§4. Bất phương trình bậc nhất hai ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vy Vy

bài 13: tìm tất các giá trị của tham số m để phương trình sau có hai nghiệm dương phân biệt

a) x2+2(m-1)x+3m-3=0

b)x2+(m-2)x+m-1=0

c) x2+(m-2)x+m+1=0

d)-x2-(m-3)x+m+1=0

e)4x2+2(m-1)x+m-1=0

f)(m-2)x2-2(m-2)x+1=0

Nguyễn Việt Lâm
9 tháng 5 2020 lúc 16:19

Để pt có 2 nghiệm dương pb \(\left\{{}\begin{matrix}a\ne0\\\Delta>0\\x_1+x_2=-\frac{b}{a}>0\\x_1x_2=\frac{c}{a}>0\end{matrix}\right.\)

a/ \(\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2-\left(3m-3\right)>0\\x_1+x_2=-2\left(m-1\right)>0\\x_1x_2=3\left(m-1\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)\left(m-4\right)>0\\m< 1\\m>1\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại m thỏa mãn

b/ \(\left\{{}\begin{matrix}\Delta=\left(m-2\right)^2-4\left(m-1\right)>0\\x_1+x_2=2-m>0\\x_1x_2=m-1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-8m+8>0\\m< 2\\m>1\end{matrix}\right.\)

\(\Rightarrow1< m< 4-2\sqrt{2}\)

Nguyễn Việt Lâm
9 tháng 5 2020 lúc 16:22

c/

\(\left\{{}\begin{matrix}\Delta=\left(m-2\right)^2-4\left(m+1\right)>0\\x_1+x_2=2-m>0\\x_1x_2=m+1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-8m>0\\m< 2\\m>-1\end{matrix}\right.\)

\(\Rightarrow-1< m< 0\)

d/

\(\left\{{}\begin{matrix}\Delta=\left(m-3\right)^2+4\left(m+1\right)>0\\x_1+x_2=3-m>0\\x_1x_2=-m-1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-2m+13>0\\m< 3\\m< -1\end{matrix}\right.\)

\(\Rightarrow m< -1\)

Nguyễn Việt Lâm
9 tháng 5 2020 lúc 16:26

e/

\(\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2-4\left(m-1\right)>0\\x_1+x_2=\frac{1-m}{2}>0\\x_1x_2=\frac{m-1}{4}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)\left(m-5\right)>0\\m< 1\\m>1\end{matrix}\right.\)

Không tồn tại m thỏa mãn

f/

\(\left\{{}\begin{matrix}m-2\ne0\\\Delta'=\left(m-2\right)^2-\left(m-2\right)>0\\x_1+x_2=2>0\\x_1x_2=\frac{1}{m-2}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\\left(m-2\right)\left(m-3\right)>0\\m-2>0\end{matrix}\right.\)

\(\Rightarrow m>3\)


Các câu hỏi tương tự
Vy Vy
Xem chi tiết
Vy Vy
Xem chi tiết
Trần Huyền Trang
Xem chi tiết
Trương Thanh Hương
Xem chi tiết
nguyen ngoc son
Xem chi tiết
lê nguyễn ngọc minh
Xem chi tiết
tran duc huy
Xem chi tiết
Miu Bé
Xem chi tiết
Linh Nguyễn
Xem chi tiết