Tìm các số nguyên \(a_1;a_2;......;a_{10}\) thỏa mãn: \(\left|a_1-a_2\right|\) + \(\left|a_2-a_3\right|\) + \(\left|a_3-a_4\right|\) + \(\left|a_4-a_5\right|\) + ..... + \(\left|a_9-a_{10}\right|\) + \(\left|a_{10}-a_1\right|\) = 2015.
Cho dãy số thực: \(a_1,a_2,a_3,...............,a_{2018}\) thỏa mãn: \(a_1^1+a^2_2+a^3_3+....................+a_{2018}^{2018}=1009\). CHứng minh: \(\left(\dfrac{a_1}{1}+\dfrac{a_2}{2}+\dfrac{a_3}{3}+..................+\dfrac{a_{2018}}{2018}\right)^2< 2018\)
Cho dãy số thực: \(a_1,a_2,a_3,............a_{2018}\) thỏa mãn: \(a^1_1+a^2_2+a^3_3+...............+a^{2018}_{2018}=1009\). CM: \(\left(\dfrac{a_1}{1}+\dfrac{a_2}{2}+\dfrac{a_3}{3}+.........+\dfrac{a_{2018}}{2018}\right)^2< 2018\)
Cho dãy số thực: \(a_1,a_2,a_3,............a_{2018}\) thỏa mãn: \(a^1_1+a^2_2+a^3_3+...............+a^{2018}_{2018}=1009\). CM: \(\left(\dfrac{a_1}{1}+\dfrac{a_2}{2}+\dfrac{a_3}{3}+.........+\dfrac{a_{2018}}{2018}\right)^2< 2018\)
Cho dãy số thực: \(a_1,a_2,a_3,.............,a_{2018}\) thỏa mãn: \(a^1_1+a^2_2+a^3_3+.................+a_{2018}^{2018}=1009\). Chứng minh: \(\left(\dfrac{a_1}{1}+\dfrac{a_2}{2}+\dfrac{a_3}{3}+.............+\dfrac{a_{2018}}{2018}\right)^2< 2018\)
Cho biểu thức \(\left(3x^8-2x^6+2x^4-x^2+1\right)^5=a_0+a_1x+a_2x+...+a_{40}x\). Giá trị của tổng \(a_0+a_1+a_2+...+a_{40}=...\)
CMR: Không có đa thức f(x) nào mà: \(f\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+.........+a_1x+a_0\left(a_1,a_2,a_3,............,a_n\in Z\right)\) có thể nhận giá trị f(7)=15 và f(15)=9
Cho biểu thức:\(A=\frac{1}{k+2}+\frac{k-2}{k^2}+\frac{3k+2}{k^2\left(k+2\right)}\)
a)Tìm các giá trị của biến k để giá trị của biểu thức A xác định .
b)Rút gọn A.
c)Tìm giá trị lớn nhất của biểu thức A và giá trị tương ứng của biến k
Cho \(S=a^3_1+a^3_2+a^3_3+...+a^3_{100}\)
với \(a_1;a_2;...;a_{100}\in Z\). Thỏa mãn \(a_1+a_2+a_3+...+a_{100}=2021^{2022}\)
Cmr \(S-1⋮6\)