a) \(x.\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
b) \(\left(x-1\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
c) \(\left(x-2\right)\left(x^2+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x^2+1=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=2\\x\in\varnothing\end{matrix}\right.\)
Vậy \(x=2\)
d) \(\left(x+1\right)\left(x^2-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x^2-4=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=\pm2\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-1\\x=\pm2\end{matrix}\right.\)
A) x={0;-2}
B) x={1;2}
C) x=2
D) x={-2;-1;2}