f, \(x^3+1=0\)
\(\left(x+1\right)\left(x^2-x+1\right)=0\)
Ta có 2 trương hợp:
(1) x + 1 = 0 => x = -1
(2) x2 - x + 1 = 0
=> \(\Delta\) = (-1)2 - 4.1.1 = 1 - 4 = -3 nhỏ hơn 0
=> Phương trình vô nghiệm.
Vậy x \(\in\) {-1}
a, \(x^2+\frac{1}{4}=x\)
\(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2=0\)
\(\left(x-\frac{1}{2}\right)^2=0\)
\(x-\frac{1}{2}=0\\ X=\frac{1}{2}\)
b, \(x^2-4x=-4\)
\(x^2-2.x.2+2^2=0\)
\(\left(x-2\right)^2=0\)
\(x-2=0\\ X=2\)
c, \(x^3+12x^2+36x=0\)
\(x\left(x^2+12x+36\right)=0\)
\(x\left(x+6\right)^2=0\)
Có: *x =0
*(x +6)2 = 0 => x + 6 = 0 => x = -6
Vậy x ∈ {-6;0}
d, \(\left(3x-1\right)^2=\left(x-3\right)^2\)
\(\left(3x-1\right)^2-\left(x-3\right)^2=0\)
\(\left(3x-1-x+3\right)\left(3x-1+x-3\right)=0\)
\(\left(2x+2\right)\left(4x-4\right)=0\)
\(8\left(x+1\right)\left(x-1\right)=0\)
\(x^2-1=0\)
\(x^2=1\) => x = \(\pm\) 1
e, \(x^3+3x^2+3x+1=0\)
\(\left(x+1\right)^3=0\)
\(x+1=0\\ X=-1\)
b, x2-4x=-4
=>x2-4x+4=0
=>x2+2x+2x+4=0
=>x(x+2)+2(x+2)=0
=>(x+2)(x+2)=0
=>x+2=0
x=-2
Vậy x=-2