Bài 1: Tìm x, biết
a)\(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)
b) \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)
c)\(\sqrt{16x-16}-\sqrt{9x-9}+\sqrt{4x-4}+\sqrt{x-1}=8\)
d) \(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=2\)
Bài: thực hiện phép tính
a. \(\dfrac{12}{1+\sqrt[]{5}}+\dfrac{15}{\sqrt[]{5}}-\dfrac{\sqrt[]{20}-5}{2-\sqrt[]{5}}\)
b. \(\dfrac{2\sqrt[]{x}}{\sqrt[]{x}-1}-\dfrac{3x}{x-\sqrt[]{x}}+\dfrac{1}{\sqrt[]{x}}\left(x>0,x\ne1\right)\)
bài 1
a) \(\sqrt{2X+1}\)
b)\(\sqrt{x^2-4}\)
c) \(\dfrac{3}{\sqrt{3X+5}}\)
d) \(\sqrt{X-3}-\sqrt{10-x}\)
e) \(\sqrt{x+4}+\dfrac{2-X}{x^2-16}\)
Tìm điều kiện xác định của các biểu thức: a) \(\sqrt{\dfrac{-10}{5-4x}}\) b)\(\sqrt{\dfrac{2x-5}{x+2}}\) c)\(\sqrt{2-x^2}\) d)\(\sqrt{1-\sqrt{x-1}}\) |
Giải phương trình sau:
a) \(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
b) \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
c) \(2x-x^2+\sqrt{6x^2-12x+7}=0\)
d) \(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6\)
Bài 1
a) \(\sqrt{81a}-\sqrt{36a}-\sqrt{144a}\) (a ≥ 0 )
b) \(\sqrt{75}+\sqrt{48}-\sqrt{300}\)
Bài 2
a) \(\sqrt{2x-3}=7\)
b) \(\sqrt{3x}+1=\sqrt{4x-3}\)
c) \(\sqrt{16x}-\sqrt{9x}=2\)
Bài 3 :Rút gọn
a) \(\sqrt{\left(2-\sqrt{5}\right)^2}\)
b) \(\left(a-3\right)^2+\left(a-9\right)\) với a<3
c) A= \(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
Bài 1: Cho biểu thức A = 1 - \(\dfrac{\sqrt{x}}{1+\sqrt{x}}\), B = \(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)+ \(\dfrac{\sqrt{x}+2}{3-\sqrt{x}}\)- \(\dfrac{10-5\sqrt{x}}{x-5\sqrt{x}+6}\)
(với x ≥ 0, x ≠ 4, x ≠ 9)
a, Tính giá trị của A biết x = 6-2\(\sqrt{5}\)
b, Rút gọn P = A : B
c, Tìm giá trị nhỏ nhất của P
Giải phương trình:
a)\(\sqrt{4x-20}-3\sqrt{\dfrac{x-5}{9}}=\sqrt{1-x}\)
b)\(\sqrt{4x+8}+2\sqrt{x+2}-\sqrt{9x+18}=1\)
c)\(\sqrt{\sqrt{5}-\sqrt{3x}}=\sqrt{8+2\sqrt{15}}\)
d)\(\sqrt{\left(\sqrt{x}-7\right)\left(\sqrt{x}+7\right)}=2\)
giải pt
a.\(2\sqrt{x-4}-\dfrac{1}{3}\sqrt{9x-36}=4-\sqrt{x-4}\)
b.\(3\sqrt{x-2}-\sqrt{x^2-4}=0\)
c.\(\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}=-5-x^2+6x\)