Ôn tập toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Công Chúa Sakura

Bài 1: Tìm số tự nhiên nhỏ nhất sao cho số đó chia cho 3 dư 1; chia cho 4 dư 2; chia cho 5 dư 3; chia cho 6 dư 4.

Bài 2: Tính nhanh:

A = \(\frac{1.5.6+2.10.12+4.20.24+9.45.54}{1.3.5+2.6.10+4.12.20+9.27.45}\)

Bài 3: Tìm 3 số có tổng bằng 210, biết rằng \(\frac{6}{7}\)số thứ nhất bằng \(\frac{9}{11}\)số thứ 2 và bằng \(\frac{2}{3}\)số thứ 3?

 

 

Trần Quỳnh Mai
30 tháng 11 2016 lúc 22:43

Bài 1 : Giải :

Vì : a chia cho 3 dư 1 => a + 2 \(⋮\)3

a chia cho 4 dư 2 => a + 2 \(⋮\)4

a chia cho 5 dư 3 => a + 2 \(⋮\)5

a chia cho 6 dư 4 => a + 2 \(⋮\)6

=> a + 2 \(\in\) BC( 3,4,5,6 )

3 = 3

4 = 22

5 = 5

6 = 2 .3

BCNN( 3,4,5,6 ) = 22 . 3 . 5 = 60

BC( 3,4,5,6 ) = { 0;60;120;180;... }

Mà : a nhỏ nhất => a + 2 nhỏ nhất

=> a + 2 = 60

=> a = 60 - 2 = 58

Vậy số tự nhiên cần tìm là 58

Bài 2 : Giải :

\(A=\frac{1.5.6+2.10.12+4.20.24+9.45.54}{1.3.5+2.6.10+4.12.20+9.27.45}\)

\(A=\frac{1.1.5.1.6.1.+1.2.5.2.6.2+1.4.5.4.6.4+1.9.5.9.6.9}{1.1.3.1.5.1+1.2.3.2.5.2+1.4.3.4.5.4+1.9.3.9.5.9}\)

\(A=\frac{1.5.6\left(1+2.2.2+4.4.4+9.9.9\right)}{1.3.5\left(1+2.2.2+4.4.4+9.9.9\right)}\)

\(A=\frac{1.5.6}{1.3.5}=\frac{6}{3}=2\)

Vậy : A = 2

Bài 3: Giải :

Quy đồng tử số , ta có :

\(\frac{6}{7}=\frac{6.3}{7.3}=\frac{18}{21};\frac{9}{11}=\frac{9.2}{11.2}=\frac{18}{22};\frac{2}{3}=\frac{2.9}{3.9}=\frac{18}{27}\)

=> \(\frac{18}{21}\) số thứ nhất = \(\frac{18}{22}\) số thứ hai và = \(\frac{18}{27}\) số thứ ba .

Hay : \(\frac{1}{21}\) số thứ nhất = \(\frac{1}{22}\) số thứ hai và = \(\frac{1}{27}\) số thứ ba .

Vậy coi số thứ nhất là 21 phần bằng nhau , số thứ hai là 22 phần bằng nhau thì số thứ ba là 27 phần bằng nhau như thế .

Tổng số phần bằng nhau là :

21 + 22 + 27 = 70

Số thứ nhất là :

210 : 70 . 21 = 63

Số thứ hai là :

210 : 70 . 22 = 66

Số thứ ba là :

210 - 63 - 66 = 81

Đáp số : ...


Các câu hỏi tương tự
Sakura Linh
Xem chi tiết
Cửu vĩ linh hồ Kurama
Xem chi tiết
TRỊNH THỊ QUỲNH
Xem chi tiết
Dương Nguyễn Thùy
Xem chi tiết
Trần Hương Giang
Xem chi tiết
Trần Hương Giang
Xem chi tiết
Trần Thị Hảo
Xem chi tiết
Anh Nguyen
Xem chi tiết
Heartilia Hương Trần
Xem chi tiết