Bài 1: So sánh
a) A=\(\dfrac{13^{15}+1}{13^{16}+1}\) và B=\(\dfrac{13^{16}+1}{13^{17}+1}\)
b) C=\(\dfrac{1999^{1999}+1}{1999^{2000}+1}\) và D=\(\dfrac{1999^{1998}+1}{1999^{1999}+1}\)
Bài 2: So sánh các ps sau một cách hợp lý
a) \(\dfrac{29}{33};\dfrac{22}{37};\dfrac{29}{37}\)
b) \(\dfrac{163}{257};\dfrac{163}{221};\dfrac{149}{257}\)
Bài 1:
a) Ta có: \(13A=\dfrac{13^{16}+13}{13^{16}+1}=1+\dfrac{12}{13^{16}+1}\)
\(13B=\dfrac{13^{17}+13}{13^{17}+1}=1+\dfrac{12}{13^{17}+1}\)
Vì \(\dfrac{12}{13^{16}+1}>\dfrac{12}{13^{17}+1}\Rightarrow1+\dfrac{12}{13^{16}+1}>1+\dfrac{12}{13^{17}+1}\)
\(\Rightarrow13A>13B\)
\(\Rightarrow A>B\)
Vậy A > B
b) Ta có: \(1999C=\dfrac{1999^{2000}+1999}{1999^{2000}+1}=1+\dfrac{1998}{1999^{2000}+1}\)
\(1999D=\dfrac{1999^{1999}+1999}{1999^{1999}+1}=1+\dfrac{1998}{1999^{1999}+1}\)
\(\dfrac{1998}{1999^{2000}+1}< \dfrac{1998}{1999^{1999}+1}\Rightarrow1+\dfrac{1998}{1999^{2000}+1}< 1+\dfrac{1999}{1999^{1999}+1}\)
\(\Rightarrow1999C< 1999D\)
\(\Rightarrow C< D\)
Vậy C < D