a,\(\dfrac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)=\(\dfrac{2^{19}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4}{6^9.2^{10}+6^{10}.2^{10}}\)
=\(\dfrac{2^{19}.3^9+2^{18}.3^9.5}{6^9.2^{10}.\left(1+6\right)}\)=\(\dfrac{2^{18}.3^9.\left(2+5\right)}{6^9.2^{10}.7}\)=\(\dfrac{2^{18}.3^9}{6^9.2^{10}}=\dfrac{2^{10}.2^8.3^9}{2^9.3^9.2^{10}}=\dfrac{2^8}{2^8.2}=\dfrac{1}{2}\)
b, \(\dfrac{\left(\dfrac{-1}{2}\right)^3-\left(\dfrac{3}{4}\right)^3.\left(-2\right)^2}{2.\left(-1\right)^5+\left(\dfrac{3}{4}\right)^2-\dfrac{3}{8}}=\dfrac{\dfrac{-1}{8}-\dfrac{27}{64}.4}{-2+\dfrac{9}{16}-\dfrac{3}{8}}=\dfrac{\dfrac{-1}{8}-\dfrac{27}{16}}{\dfrac{-23}{16}-\dfrac{3}{8}}=\dfrac{\dfrac{-29}{16}}{\dfrac{-29}{16}}=1\)
Bài 1:
\(a,\dfrac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(=\dfrac{2^{19}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4}{2^9.3^9.2^{10}+3^{10}.\left(2^2\right)^{10}}\)
\(=\dfrac{2^{19}.3^9+3.5.2^{18}.3^8}{2^9.3^9.2^{10}+3^{10}.2^{20}}\)
\(=\dfrac{2^{19}.3^9+5.2^{18}.\left(3^8.3\right)}{2^9.2^{10}.3^9+3^{10}.2^{20}}\)
\(=\dfrac{2^{19}.3^9+5.2^{18}.3^9}{2^{19}.3^9+3^{10}.2^{20}}\)
\(=\dfrac{1+5.1.1}{1+3.2^2}=\dfrac{6}{13}\)