Bài 2: Cộng, trừ số hữu tỉ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Chi

Bài 1:

Một miếng đất hình chữ nhật có chiều dài hơn chiều rộng 10m và tỉ số giữa chiều rộng và chiều dài là \(\dfrac{2}{3}\). Tính diện tích hình chữ nhật

Bài 2:

Một lớp học có 48 học sinh. Số học sinh trung bình bằng \(\dfrac{3}{2}\) số học sinh khá. Số học sinh khá bằng 2 lần số học sinh giỏi. Tính số học sinh mỗi loại

P/s: Giúp mk vs, mk đg cần gấp. Thanks

Fa Châu De
10 tháng 11 2018 lúc 12:34

Bài1:

Gọi lần lượt chiều rộng và chiều dài là x, y. Biết tỉ số giữa x và y là \(\dfrac{2}{3}\), ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}\) và y - x = 10

Theo tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{y}{3}=\dfrac{x}{2}=\dfrac{y-x}{3-2}=\dfrac{10}{1}=10\)

Suy ra:

x = 2 . 10 = 20

y = 3 . 10 = 30

Vì x = 20 và y = 30 => Vậy chiều rộng miến đất là: 20 mét và chiều dài miếng đất là: 30 mét.

Lê Chi
10 tháng 11 2018 lúc 19:06

Giúp mk vs các bn khocroi

Trịnh Ngọc Quỳnh Anh
10 tháng 11 2018 lúc 21:20

Bài 1:

Một miếng đất hình chữ nhật có chiều dài hơn chiều rộng 10m và tỉ số giữa chiều rộng và chiều dài là \(\dfrac{2}{3}\). Tính diện tích hình chữ nhật

Gọi a và b lần lượt là chiều dài và chiều rộng của miếng đất hình chữ nhật

Theo bài ra ta có:

\(\dfrac{a}{b}=\dfrac{2}{3}\) và b - a = 10

\(\dfrac{a}{b}=\dfrac{2}{3}\)=> \(\dfrac{a}{2}=\dfrac{b}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{b-a}{3-2}=\dfrac{10}{1}=10\)

=> \(\dfrac{a}{2}=10=>a=20\)

\(\dfrac{b}{3}=10=>b=30\)

Vậy chiều rộng miếng đất là 20m, chiều dài miếng đất là 30m.

Miinhhoa
11 tháng 11 2018 lúc 22:21

bài 2 nek

Cộng, trừ số hữu tỉ


Các câu hỏi tương tự
Sleepy Ash Kuro
Xem chi tiết
hỏa quyền ACE
Xem chi tiết
pham thi ngoc
Xem chi tiết
pham thi ngoc
Xem chi tiết
Niu niu
Xem chi tiết
pham thi ngoc
Xem chi tiết
pham thi ngoc
Xem chi tiết
Nguyễn Châu Anh Thư
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết