Bài 1:
Ta có:
+) \(3.4=2.6\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3}{2}=\dfrac{6}{4}\\\dfrac{3}{6}=\dfrac{2}{4}\\\dfrac{4}{2}=\dfrac{6}{3}\\\dfrac{4}{6}=\dfrac{2}{3}\end{matrix}\right.\)
+) \(3.6=2.9\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3}{2}=\dfrac{9}{6}\\\dfrac{3}{9}=\dfrac{2}{6}\\\dfrac{6}{2}=\dfrac{9}{3}\\\dfrac{6}{9}=\dfrac{2}{3}\end{matrix}\right.\)
Bài 2:
a) Ta có: \(\dfrac{x}{11}=\dfrac{y}{13}\) và \(x-y=6\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{11}=\dfrac{y}{13}=\dfrac{x-y}{11-13}=\dfrac{6}{-2}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}x=11.\left(-3\right)=-33\\y=13.\left(-3\right)=-39\end{matrix}\right.\)
Vậy \(x=-33;y=-39\)
b) Theo bài ra ta có:
\(x:y:z=1:2:3\)
\(\Rightarrow\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\)
\(\Rightarrow\dfrac{4x}{4}=\dfrac{3y}{6}=\dfrac{2z}{6}\)
và \(4x-3y+2z=36\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{4x}{4}=\dfrac{3y}{6}=\dfrac{2z}{6}=\dfrac{4x-3y+2z}{4-6+6}=\dfrac{36}{4}=9\)
\(\Rightarrow\left\{{}\begin{matrix}4x=4.9=36\Rightarrow x=9\\3y=6.9=54\Rightarrow y=18\\2z=6.9=54\Rightarrow z=27\end{matrix}\right.\)
Vậy \(x=9;y=18;z=27\)
c) Ta có: \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}\)
\(\Rightarrow\dfrac{5x}{15}=\dfrac{y}{5}=\dfrac{3z}{-6}\)
và \(5x-y+3z=124\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{5x}{15}=\dfrac{y}{5}=\dfrac{3z}{-6}=\dfrac{5x-y+3z}{15-5+\left(-6\right)}=\dfrac{124}{4}=31\)
\(\Rightarrow\left\{{}\begin{matrix}5x=15.31=465\Rightarrow x=93\\y=5.31=155\\3z=\left(-6\right).31=-186\Rightarrow z=-62\end{matrix}\right.\)
Vậy \(x=93;y=155;z=-62\)