Giải các bất phương trình sau rồi biểu diễn tập nghiệm của chúng trên trục số:
1) \(\left(x+3\right)^2-3\left(2x-1\right)>x\left(x-4\right)\)
2) \(1+\dfrac{x+1}{3}>\dfrac{2x-1}{6}-2\)
3) \(x-\dfrac{2x-7}{4}< \dfrac{2x}{3}-\dfrac{2x+3}{2}-1\)
4) \(\dfrac{2x+1}{x-3}\le2\)
5) \(\dfrac{12-3x}{2x+6}>3\)
6) \(x^2+3x-4\le0\)
7) \(\dfrac{5}{5x-1}< \dfrac{-3}{5-3x}\)
8) \(\left(2x-1\right)\left(3-2x\right)\left(1-x\right)>0\)
Giải các bất phương trình sau và biểu diễn nghiệm trên trục số:
a) 2x + 2 > 4
b) 3x + 2 > -5
c) 10x + 3 - 5x ≤ 14x + 12
d) 4x - 8 ≥ 3(2x - 1) - 2x + 1
e) \(\frac{3-2x}{5}>\frac{2-x}{3}\)
f) \(\frac{x-2}{6}-\frac{x-1}{3}\le\frac{x}{2}\)
Giải các bất phương trình sau:
a)\(2x^2-3x+1>0\) b)\(-3x^2+2x+1< 0\)
c)\(\frac{x+3}{x-2}\ge0\) d)\(\frac{2x+1}{x+2}\ge1\)
e)\(\frac{\sqrt{x}+3}{2-\sqrt{x}}\le0\) g)\(\frac{\sqrt{x}-3}{\sqrt{x}-2}\ge0\)
h)\(\frac{\sqrt{x}-3}{\sqrt{x}-1}< \frac{1}{3}\)
Cho hai bất phương trình: 2x +3 < 6-(3-4x) (1) và \(\frac{x-1}{3}\le\frac{x+14}{3}-x\)(2).
a) Giải các bất phương trình (1) và (2) và biểu diễn tập nghiệm của mỗi bất phương trình trên một trục số.
b) Tìm các giá trị nguyên của x thỏa mãn đồng thời cả hai bất phương trình trên?
giúp mik với đi
1. Giải các phương trình sau
a) \(\frac{2x-3}{4}-\frac{3-x}{6}=x+\frac{3\left(x-1\right)}{2}\)
b) \(\frac{1}{3-x}-\frac{1}{x+1}=\frac{x}{x-3}-\frac{\left(x-1\right)^2}{x^2-2x-3}\)
c) \(\left|x^2-3x\right|=x^2+1\)
d) Với giá trị nào của x thì giá trị biểu thức \(\frac{\left(x-2\right)^2}{5}+\frac{3\left(x-1\right)^2}{10}< \frac{x^2+1}{2}\)
Giải phương trình sau
a, \(\frac{3x}{x^2-x+3}-\frac{2x}{x^2-3x+3}=-1\)
b, \(\frac{1}{\left(x^2+2x+2\right)^2}+\frac{1}{\left(x^2+2x+3\right)^2}=\frac{5}{4}\)
c,\(\left(\frac{x}{x-1}\right)^2+\left(\frac{x}{x+1}\right)^2=\frac{10}{9}\)
d,\(\frac{x^2}{2}+\frac{18}{x^2}=13\left(\frac{x}{2}-\frac{3}{x}\right)\)
Bài 1: Giải các bất phương trình sau
a) x+1/x+3 > 1
b) 2x-1/x-3 ≤ 2
c) x2+2x+2/x2+3 ≥ 1
d) 2x+1/x2+2 ≥ 1
Giải các phương trình :
a) 2x ( x - 5 ) = 5 ( x - 5 )
b) x2 - x - 6 = 0
c) ( x - 1 ) ( x2 + 5x - 2 ) - x3 + 1 = 0
d) \(\frac{x+5}{x-1}=\frac{x+1}{x-3}-\frac{8}{x^2-4x+3}\)
e) \(\frac{x^2}{x-1}=2+\frac{x}{x+1}\)
Giải bất phương trình sau và biểu diễn tập nghiệm bất phương trình trên trục số
\(\frac{x-3}{5}+1>2x-5\)