Ôn tập toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Huyền

bài 1: chứng minh rằng tích của 4 số tự nhiên liên tiếp cộng thêm 1 là bình phương của một đa thức ba hạng tử

thanh ngọc
12 tháng 9 2016 lúc 20:23

gọi 4 số tự nhiên liên tiếp lần lượt là : \(n;\left(n+1\right);\left(\cdot n+2\right)\left(n+3\right)\)

ta có :

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)

\(=n\left(n+3\right)\left(n+1\right)\left(n+2\right)+1\)

\(=\left(n^2+3n\right)\left(n+1\right)\left(n+2\right)+1\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\) (1)

đặt \(n^2+3n=t\) \(\left(t\in N\right)\) thì (1) = \(t\left(t+2\right)+1\)

                                                    \(=t^2+2t+1\)

                                       \(=\left(t+1\right)=\left(n^2+3n+1\right)\) 

\(\Rightarrow dpcm\)

 

 

 

 


Các câu hỏi tương tự
Trần Lâm
Xem chi tiết
Huỳnh Châu Giang
Xem chi tiết
Nguyễn Thùy Linh
Xem chi tiết
Yến Nguyễn
Xem chi tiết
Hồ Quế Ngân
Xem chi tiết
Nguyễn Trịnh Hoài Thu
Xem chi tiết
Hùng Phan
Xem chi tiết
Candy Soda
Xem chi tiết
Phương
Xem chi tiết