gọi 4 số tự nhiên liên tiếp lần lượt là : \(n;\left(n+1\right);\left(\cdot n+2\right)\left(n+3\right)\)
ta có :
\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)
\(=n\left(n+3\right)\left(n+1\right)\left(n+2\right)+1\)
\(=\left(n^2+3n\right)\left(n+1\right)\left(n+2\right)+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\) (1)
đặt \(n^2+3n=t\) \(\left(t\in N\right)\) thì (1) = \(t\left(t+2\right)+1\)
\(=t^2+2t+1\)
\(=\left(t+1\right)=\left(n^2+3n+1\right)\)
\(\Rightarrow dpcm\)