Bài 1: Có P(ABCD) = AB + BC + CD + DA = 66
P(ABC) = AB + BC + CA = 56
P(ACD) = AC + CD + DA = 60
=> P (ABC) + P(ACD) = (AB + BC + CD + DA) + 2.AC = 66 + 2.AC = 56 + 60 = 116
=> 2.AC = 116 - 66 = 50 => AC = 50 : 2 = 25
Bài 1: Có P(ABCD) = AB + BC + CD + DA = 66
P(ABC) = AB + BC + CA = 56
P(ACD) = AC + CD + DA = 60
=> P (ABC) + P(ACD) = (AB + BC + CD + DA) + 2.AC = 66 + 2.AC = 56 + 60 = 116
=> 2.AC = 116 - 66 = 50 => AC = 50 : 2 = 25
Cho tam giác đều ABC, 2 đường cao BN,CM
a) C/m tứ giác BMNC là hình thang cân
b) Tính chu vi của hình thang BMNC, biết chu vi tam giác ABC = 24dm.
Chu vi của một tam giác cân biết độ dài hai cạnh của nó bằng 7cm và 13cm là cm.
Cho tam giác ABC vuông cân tại A , AB=3cm , điểm M thuộc cạnh BC . Kẻ MD vuông góc AB , ME vuông góc với AC
Tứ giác ADME là hình gì ? Vì sao ?Tính chu vi tứ giác ADMEDiểm M ở vị trí nào trên cạnh BC thì AM có độ dài ngắn nhất tính độ dài ngắn nhất của AMGiúp mình với,giải chi tiết cho mình nha!
Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EF
a. CM: AK = KC.
b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KF
Bài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.
a. CM: Tứ giác ADME là hình bình hành.
b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?
c. Nếu tam giác ABC vuông tại A thì tứ giác ADME là hình gì? Vì sao?
d. Trong trường hợp tam giác ABC vuông tại A, cho biết AB = 6cm, AC = 8cm, tính độ
dài AM.
Bài 4: Cho hình bình hành ABCD có AD = 2AB, Ẩ = 60°. Gọi E và F lần lượt là trung
điểm của BC và AD.
a. Chứng minh AE vuông góc BF
b. Chứng minh tứ giác BFDC là hình thang cân.
c. Lấy điểm M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật.
d. Chứng minh M, E, D thẳng hàng.
Bài 5: Cho tam giác ABC vuông tại A có góc ABC= 60°, kẻ tia Ax song song với BC.
Trên Ax lấy điểm D sao cho AD = DC.
a. Tính các góc BAD và DAC.
b. Chứng minh tứ giác ABCD là hình thang cân.
c. Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.
d. Cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED
1) chứng minh rằng trong một tứ giác,tổng hai đường chéo lớn hơn tổng hai cạnh đối
2)chứng minh rằng trong một tứ giác,tổng hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy
các bạn giúp mình bài này với
Bài 1:Cho tam giác ABC có AB = 6cm, AC = 8cm , BC = 10 cm, gọi AM là trung tuyến của tam giác
a)Tính độ dài AM
b)Kẻ MD vuông góc với AB,ME vuông góc với AC, tứ giác ADME có dạng đặc biệt gì ?
c) Tứ giác DECB có dạng đặc biệt nào ?
:Cho hình thang ABCD có đáy lớn AD , đường chéo AC vuông góc với cạnh bên CD , ·BAC = ·CAD. Tính AD nếu chu vi của hình thang bằng 20 cm và góc D bằng 60 độ.
Cho hình thang cân có đáy lớn dài 2,7m cạnh bên dài 1m,góc tạo bởi cạnh bên và đáy lớn bằng 60 độ .Tính độ dài đáy nhỏ.
2.Hình thang cân ABCD có đường chéo Bd vuông góc với cạnh bên Bc và Db là tia phân giác góc D,tia DA và CB cắt nhau tại I BC=4cm
a)Cm:Tam giác Icb đều
b)Tính chu vi hình thang ABCD
giúp mình gấp
bài 1:
tìm chu vi của tam giác ABC, biết độ dài các đường trung bình của nó là 4cm, 5cm, 6cm.