Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đỗ Văn Nam

Bài 1: Cho tam giác đều ABC. Điểm M ở miền trong của tam giác sao cho MA = 1 cm, CM = 2 cm, BM là độ dài cạnh hình vuông diện tích là 3 cm². Lấy D thuộc mặt phẳng bờ BC không chứa A sao cho tam giác CMD đều.

a) Chứng minh rằng: ΔCAM = ΔCBD.

b) Chứng minh rằng: ΔMBD là tam giác vuông.

c) Tính góc BMC, góc AMB. Suy ra A, M, D thẳng hàng.

d) Tìm diện tích hình vuông có cạnh BC.

Trịnh Long
3 tháng 4 2020 lúc 15:50

a)

– Xét ΔCAM và ΔCBD ta có:

+) AC = BC (ΔABC đều)

+) ∠ACM + ∠MCB = 60º, ∠BCD + ∠MCB = 60º nên suy ra ∠ACM = ∠BCD

+) MC = DC (ΔMCD đều)

=> ΔCAM = ΔCBD (c.g.c) (đpcm)

b) – Theo câu a, ΔCAM = ΔCBD (c.g.c)

=> BD = AM = 1 (cm) (Hai cạnh tương ứng)

=> ∠AMC = ∠BDC (Hai góc tương ứng) (1)

– Xét ΔBDM ta có:

AM = 1 cm,

BM là cạnh của hình vuông có diện tích bằng 3 cm². Nên suy ra: BM = √3 (cm).

MD = MC = 2 cm (ΔMCD đều).

Ta có: BM² + BD² = 1 + (√3)² = MD²

– Theo định lý Pi-ta-go đảo, suy ra: ΔBDM là tam giác vuông tại B (đpcm).

c) – Theo câu b ta có: ΔBDM là tam giác vuông tại B, mà BD = 1 cm, DM = 2 cm,

=> DM = 2BD nên suy ra: ∠BMD = 30º, mà ΔMCD là tam giác đều nên ∠CMD = 60º,

=> ∠BMC = 30º + 60º = 90º.

– Ta có: ∠BMD + ∠BDM = 90º

=> ∠BDM = 90º – 30º = 60º, mà ΔMCD là tam giác đều nên ∠MDC = 60º,

=> ∠BDC = ∠BDM + ∠MDC = 60º + 60º = 120º.

Từ (1) suy ra: ∠AMC = ∠BDC = 120º.

=> ∠AMB = 360º – (∠AMC + ∠BMC) = 360º – (120º + 90º) = 150º.

– Ta có: ∠AMD = ∠AMC + ∠DMC = 120º + 60º = 180º

=> Hai tia MA và MD là hai tia đối nhau

=> 3 điểm A, M, D thẳng hàng.

d) Theo câu c, ta có: ∠BMC = 90º nên suy ra: ΔBMC là tam giác vuông tại B.

=> BC² = BM² + MC² = 3 + 4 = 7.

=>Diện tích hình vuông có cạnh BC là S = BC² = 7 (cm²).

Hình tự vẽ!

Khách vãng lai đã xóa

Các câu hỏi tương tự
02.HảiAnh Bùi Lưu
Xem chi tiết
Minh Phạm
Xem chi tiết
33- lê Thuận quốc 7/2
Xem chi tiết
Trịnh Hoàng Ngọc
Xem chi tiết
Athena
Xem chi tiết
Linh Giang Vương
Xem chi tiết
huy11111111
Xem chi tiết
NU NGUYEN
Xem chi tiết
Error
Xem chi tiết