Xét N :
N = \(\frac{1}{2.2}\)+\(\frac{1}{3.3}\)+\(\frac{1}{4.4}\)+...+\(\frac{1}{2009.2009}\)+\(\frac{1}{2010.2010}\)
Ta có :
\(\frac{1}{2.2}\)< \(\frac{1}{1.2}\)
\(\frac{1}{3.3}\)< \(\frac{1}{2.3}\)
...
\(\frac{1}{2009.2009}\)<\(\frac{1}{2008.2009}\)
\(\frac{1}{2010.2010}\)<\(\frac{1}{2019.2010}\)
Cộng vế theo vế của các bất đẳng thức trên , ta có :
\(\frac{1}{2.2}\)+\(\frac{1}{3.3}\)+\(\frac{1}{4.4}\)+...+\(\frac{1}{2009.2009}\)+\(\frac{1}{2010.2010}\) < \(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+...+\(\frac{1}{2008.2009}\)+\(\frac{1}{2019.2010}\)
=> N < 1 - \(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+...+\(\frac{1}{2009}\)-\(\frac{1}{2010}\)
=> N < 1 - \(\frac{1}{2010}\)<1
=> N < 1