a/ Áp dụng Py-ta-go vào tam giác INP => IP = √(NP² - IN²) = 9cm
b/ Áp dụng Py-ta-go vào tam giác INQ => QN = √(QI² + IN²) = 20cm
Có QP = QI + IP = 16 + 9 = 25 cm
Xét tam giác QNP có QP² = QN² + NP² (25² = 20² + 15²)
=> tam giác QNP vuông tại N => QN _l_ NP
c/ Có MN = QP - 2.IP = 25 - 2.9 = 7
==> S MNPQ = (MN + QP).NI / 2 = 192 cm²
d/ Tam giác NPQ vuông tại N có trung tuyến NE
=> NE = QE (= PQ/2) => NEQ cân tại E => EQN = ENQ (1)
Mà ENQ + PNE = PNQ = 90* và PNK + PNE = ENK = 90* => góc ENQ = PNK (2)
Từ (1)(2) => EQN = PNK
Xét tam giác KPN và KNQ có góc K chung và EQN = PNK => 2 tam giác này đồng dạng (g.g)
==> KP/KN = KN/KQ <=> KN^2 = KP.KQ (đpcm)