bài 1: cho hình bình hành ABCD có góc A=120 độ và AB=2AD
a, chứng minh rằng : tia phân giác của góc D cắt AB tại E là trung điểm của AB
b, chứng minh AB⊥AC
bài 2: cho △ABC , D ∈ BC. qua D kẻ đường thẳng song song với AB cắt AC ở E >. trên cạnh AB lấy điểm F sao cho AF=DE . gọi I là trung điểm của AD . chứng minh :
a, DF=AE
b, E đối xứng F qua I
Bài 1:
a) Ta có: AB//CD(hai cạnh đối của hình bình hành ABCD)
⇒\(\widehat{A}+\widehat{ADC}=180^0\)(hai góc trong cùng phía bù nhau)
\(\Rightarrow\widehat{ADC}=180^0-120^0=60^0\)
mà DE là tia phân giác của \(\widehat{ADC}\)(gt)
nên \(\widehat{ADE}=\frac{\widehat{ADC}}{2}=\frac{60^0}{2}=30^0\)(1)
Xét ΔADE có \(\widehat{A}+\widehat{AED}+\widehat{ADE}=180^0\)(định lí tổng ba góc trong một tam giác)
\(\Leftrightarrow\widehat{AED}=180^0-120^0-30^0=30^0\)(2)
Từ (1) và (2) suy ra \(\widehat{ADE}=\widehat{AED}\)(=300)
Xét ΔADE có \(\widehat{ADE}=\widehat{AED}\)(cmt)
nên ΔADE cân tại A(định lí đảo của tam giác cân)
⇒AD=AE
mà \(AD=\frac{AB}{2}\)(gt)
nên \(AE=\frac{AB}{2}\)
mà A,E,B thẳng hàng
nên E là trung điểm của AB(đpcm)
Bài 2:
a) Xét tứ giác AFDE có
AF//DE(AB//DE, F∈AB)
AF=DE(gt)
Do đó: AFDE là hình bình hành(dấu hiệu nhận biết hình bình hành)
⇒DF=AE(hai cạnh đối của hình bình hành AFDE)
b) Ta có: AFDE là hình bình hành(cmt)
⇒Hai đường chéo AD và FE cắt nhau tại trung điểm của mỗi đường(định lí hình bình hành)
mà I là trung điểm của AD(gt)
nên I là trung điểm của FE
hay F và E đối xứng nhau qua I(đpcm)