BÀI 1: Cho ΔABC vuông tại A. Biết BC=a, đường cao AH. Chứng minh rằng:
a, AH = a . sinB . cosB
b, BH = a . cos2B
c, CH = a . sin2B
BÀI 2: Cho ΔABC vuông ở A, đường cao AH, đường phân giác trong AD chia cạnh huyền thành hai đoạn tỉ lệ 1 : 3. Tính tỉ số của hai đoạn thẳng BH và CH.
GIÚP MÌNH VỚI Ạ! MÌNH CẦN GẤP
Bài 2:
Xét ΔABC có AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{BH}{CH}=\dfrac{1}{9}\)
Xét ΔABC có AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
⇔ \(\dfrac{AB}{AC}=\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{AB^2}{AC^2}=\dfrac{1}{9}\)
\(\Leftrightarrow\dfrac{BC.BH}{BC.CH}=\dfrac{1}{9}\)
\(\Leftrightarrow\dfrac{BH}{CH}=\dfrac{1}{9}\)