Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Elli Sam

bài 1:

Cho biểu thưc :

M = \(\frac{a^2}{a-1}+\left(\frac{a}{a^2-1}+\frac{1}{a-a^3}\right):\frac{1-a}{a+a^3}\)

a. rut gọn M

b. tinh gia trị M khi a = \(\frac{-1}{2}\)

jup mình nhe thk m.n

Trần Đăng Nhất
12 tháng 4 2020 lúc 14:24

ĐKXĐ: \(\left\{{}\begin{matrix}a-1\ne0\\a^2-1\ne0\\a-a^3\ne0\\a+a^3\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a\ne1\\a\ne\left\{-1;1\right\}\\a\left(1-a^2\right)\ne0\\a\left(1+a^2\right)\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a\ne1\\a\ne\left\{1;-1\right\}\\a\ne\left\{-1;0;1\right\}\\a\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\a\ne-1\\a\ne1\end{matrix}\right.\)

\(M=\frac{a^2}{a-1}+\left(\frac{a}{a^2-1}+\frac{1}{a-a^3}\right):\frac{1-a}{a+a^3}\)

\(=\frac{a^2}{a-1}+\left(\frac{a}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a\left(1-a^2\right)}\right):\frac{1-a}{a\left(1+a^2\right)}\)

\(=\frac{a^2}{a-1}+\left(\frac{a^2}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a\left(a+1\right)\left(a-1\right)}\right):\frac{1-a}{a\left(1+a^2\right)}\)

\(=\frac{a^2}{a-1}+\frac{\left(a-1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)}.\frac{a\left(1+a^2\right)}{1-a}\)

\(=\frac{a^2}{a-1}-\frac{1+a^2}{a-1}=\frac{a^2-1-a^2}{a-1}=-\frac{1}{a-1}\)

b/ Thay $a=\frac{1}{2}$ vào M ta được \(M=-\frac{1}{-\frac{1}{2}-1}=-\frac{1}{-\frac{3}{2}}=\frac{1}{\frac{3}{2}}=\frac{2}{3}\)


Các câu hỏi tương tự
Elli Sam
Xem chi tiết
vyvy
Xem chi tiết
Elli Sam
Xem chi tiết
Min
Xem chi tiết
Bảo Nguyễn Khánh
Xem chi tiết
Đức Cường
Xem chi tiết
Nhóc Bin
Xem chi tiết
Trần Khởi My
Xem chi tiết
Lê Việt
Xem chi tiết