Đề bài nên là $a,b>0$ sao cho $a+b=1$
Lời giải:
Áp dụng BĐT AM-GM:
$1=a+b\geq 2\sqrt{ab}\Rightarrow ab\leq \frac{1}{4}$
\(M=\frac{a^2+b^2}{ab}+ab=\frac{(a+b)^2-2ab}{ab}+ab=\frac{1}{ab}+ab-2\)
Tiếp tục áp dụng BĐT AM-GM:
\(ab+\frac{1}{16ab}\geq \frac{1}{2}\)
\(\frac{15}{16ab}\geq \frac{15}{16.\frac{1}{4}}=\frac{15}{4}\)
$\Rightarrow ab+\frac{1}{ab}\geq \frac{17}{4}$
$\Rightarrow M\geq \frac{9}{4}$
Vậy $M_{\min}=\frac{9}{4}$ khi $a=b=\frac{1}{2}$