Bài 1 : Cho 2 số a và b thỏa mãn a+b=1.Chứng minh a^3+b^3+ab>=\(\frac{1}{2}\)
Bài 2:Tìm đa thức f(x) biết F(x) chia x+2 dư 10,chia x-2 dư 24,chia \(x^2-4\) được thương -5x và còn dư.
Bài 3 : Tìm dư khi chia \(x^{2015}+x^{1945}+x^{1930}+x^2-x+1\) cho \(x^2-1\)
Bài 4 : Cho ba số a,b,c khác 0 thỏa mãn\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}=\frac{a}{b}+\frac{c}{b}+\frac{b}{a}\) chứng minh a=b=c
1/ \(a^3+b^3+ab=\left(a+b\right)\left(a^2+b^2-ab\right)+ab=a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2=\frac{1}{2}\)
2/ \(F\left(x\right)=P\left(x\right).\left(x+2\right)+10\Rightarrow F\left(-2\right)=10\)
\(F\left(x\right)=Q\left(x\right).\left(x-2\right)+24\Rightarrow F\left(2\right)=24\)
Do \(x^2-4\) bậc 2 nên đa thức dư tối đa là bậc nhất có dạng \(ax+b\)
\(F\left(x\right)=R\left(x\right).\left(x^2-4\right)+ax+b\)
Thay \(x=-2\Rightarrow F\left(-2\right)=-2a+b=10\)
Thay \(x=2\Rightarrow F\left(2\right)=2a+b=24\)
\(\Rightarrow\left\{{}\begin{matrix}-2a+b=10\\2a+b=24\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{7}{2}\\b=17\end{matrix}\right.\) \(\Rightarrow\) dư \(\frac{7}{2}x+17\)
3/Vì đa thức chia có bậc 2 nên đa thức dư có bậc 1, có dạng ax+b. Ta có :\(x^{2015}+x^{1945}+x^{1930}+x^2-x+1=Q\left(x\right).\left(x^2-1\right)+ax+b\)Thay x=1 được 4=a+b(1)
Thay x=-1 được 2=-a+b(2)
Cộng (1) và (2) được 6=2b suy ra b=3, từ đó suy ra a=1
Vậy dư là x+3
Bài 3:
Do \(x^2-1\) bậc 2 nên đa thức dư tối đa bậc nhất, giả sử có dạng \(ax+b\)
\(\Rightarrow x^{2015}+x^{1945}+x^{1930}+x^2-x+1=P\left(x\right).\left(x^2-1\right)+ax+b\)
Thay \(x=1\Rightarrow4=a+b\)
Thay \(x=-1\Rightarrow2=-a+b\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=4\\-a+b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=3\end{matrix}\right.\)
Đa thức dư là \(x+3\)
Câu 4:
Đặt \(\left(\frac{a}{b};\frac{b}{c};\frac{c}{a}\right)=\left(x;y;z\right)\)
\(\Rightarrow x^2+y^2+z^2=x+xz+yz\)
Hmm, nhìn đến đây thì đoán bạn viết nhầm đề, đề đúng chắc vế phải là \(\frac{a}{c}+\frac{c}{b}+\frac{b}{a}\)
Vì f(x) chia x^2-4 đc thương là -5x nên F(x)có bậc 3và dư có bậc 1, ta có \(ax^3+bx^2+cx+d=-5x\left(x^2-4\right)+\left(mx+n\right)\)
Theo đề, f(x) chia x+2 dư 10, x-2 dư 24.Áp dụng Bedut có
\(\left\{{}\begin{matrix}f\left(-2\right)=10\\f\left(2\right)=24\end{matrix}\right.\)