Ôn tập phương trình bậc hai một ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đinh Doãn Nam

Bài 1 :a)Cho a,b,c là độ dài 3 cạnh của một tam giác.Chứng minh rằng khi đó \(\sqrt{a};\sqrt{b};\sqrt{c}\) cũng là độ dài 3 cạnh của một tam giác nào đó

b)Giải phương trình:

\(\sqrt{x+2}\left(x+\sqrt{2x+1}\right)=x+2+x\sqrt{2x+1}\)

Bài 2:Giải phương trình:

\(\sqrt{6x^2+1}=\sqrt{2x-3}+x^2\)

Nguyễn Việt Lâm
9 tháng 5 2019 lúc 13:56

Bài 1: đơn giản là đi kiểm tra các BĐT tam giác

\(a+b>c\Rightarrow\sqrt{a+b}>\sqrt{c}\)

Mà với \(a;b\) dương ta luôn có \(\sqrt{a}+\sqrt{b}>\sqrt{a+b}\)

\(\Rightarrow\sqrt{a}+\sqrt{b}>\sqrt{c}\)

Hoàn toàn tương tự với 2 tổng còn lại

Từ dạng tổng chỉ cần chuyển vế ta sẽ chứng minh được các BĐT dạng hiệu

Bài 2:

ĐKXĐ: \(x\ge-\frac{1}{2}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+2}=a\\x=b\\\sqrt{2x+1}=c\end{matrix}\right.\) phương trình trở thành:

\(a\left(b+c\right)=a^2+bc\Leftrightarrow a^2-ab-ac+bc=0\)

\(\Leftrightarrow a\left(a-b\right)-c\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-c\right)\left(a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=c\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+2}=x\left(x\ge0\right)\\\sqrt{x+2}=\sqrt{2x+1}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x-2=0\\x+2=2x+1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)

Câu 3:

ĐKXĐ: \(x\ge\frac{3}{2}\)

\(\Leftrightarrow x^2+1-\sqrt{6x^2+1}+\sqrt{2x-3}-1=0\)

\(\Leftrightarrow\frac{x^4+2x^2+1-\left(6x^2+1\right)}{x^2+1+\sqrt{6x^2+1}}+\frac{2x-3-1}{\sqrt{2x-3}+1}=0\)

\(\Leftrightarrow\frac{x^2\left(x+2\right)\left(x-2\right)}{x^2+1+\sqrt{6x^2+1}}+\frac{2\left(x-2\right)}{\sqrt{2x-3}+1}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{x^2\left(x+2\right)}{x^2+1+\sqrt{6x^2+1}}+\frac{2}{\sqrt{2x-3}+1}\right)=0\)

\(\Leftrightarrow x-2=0\) (ngoặc phía sau luôn dương \(\forall x\ge\frac{3}{2}\))

\(\Rightarrow x=2\)


Các câu hỏi tương tự
Đinh Doãn Nam
Xem chi tiết
Đinh Doãn Nam
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Vương Tuấn Khải
Xem chi tiết
Đinh Doãn Nam
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Won Kim Eun (Sarah)
Xem chi tiết