Bài 2: Tìm MIN
\(A=x^2-6x+5\)
\(A=x^2-2x.3+3^2-3^2+5\)
\(A=\left(x-3\right)^2-4\ge-4\)
Dấu "=" xảy ra khi \(x-3=0\Rightarrow x=3\)
Vậy MINA = -4 khi x = 3
\(B=x^2-x+1\)
\(B=x^2-2x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)2-\left(\dfrac{1}{2}\right)^2+1\)
\(B=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=" xảy ra khi \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)
Vậy \(MIN_A=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)
bài 1: triển khai
a. (-x+3)^2=
b.(1-2x)^2=
c.(-x-5)^2=