Bài 1 (4,5 điểm) Tính giá trị các biểu thức sau:
Bài 2 (4,0 điểm)
a. Tìm số tự nhiên x biết 8.6 + 288 : (x - 3)2 = 50
b. Tìm các chữ số x; y để chia cho 2; 5 và 9 đều dư 1.
c. Chứng tỏ rằng nếu p là số nguyên tố lớn hơn 3 thì p2 - 1 chia hết cho 3.
Bài 3 (4,5 điểm)
a. Cho biểu thức:
Tìm tất cả các giá trị nguyên của n để B là số nguyên.
b.Tìm các số nguyên tố x, y sao cho: x2 + 117 = y2
c. Số 2100 viết trong hệ thập phân có bao nhiêu chữ số .
Bài 4 (5,0 điểm)
Cho góc xBy = 550. Trên các tia Bx; By lần lượt lấy các điểm A; C (A ≠ B; C ≠ B). Trên đoạn thẳng AC lấy điểm D sao cho góc ABD = 300
a. Tính độ dài AC, biết AD = 4cm, CD = 3cm.
b. Tính số đo của góc DBC.
c. Từ B vẽ tia Bz sao cho góc DBz = 900. Tính số đo góc ABz.
Bài 5 (2,0 điểm)
a. Tìm các chữ số a, b, c khác 0 thỏa mãn:
b. Cho
Bài 1:
a) \(A=\frac{2}{3}+\frac{5}{6}:5-\frac{1}{18}\cdot\left(-3\right)^2\)
\(A=\frac{2}{3}+\frac{1}{6}-\frac{1}{18}\cdot9\)
\(A=\frac{2}{3}+\frac{1}{6}-\frac{1}{2}\)
\(A=\frac{5}{6}-\frac{1}{2}=\frac{1}{3}\)
b) \(B=3\cdot\left\{5\cdot\left[\left(5^2+2^3\right):11\right]-16\right\}+2015\)
\(B=3\cdot\left\{5\cdot\left[\left(25+8\right):11\right]-16\right\}+2015\)
\(B=3\cdot\left[5\cdot\left(33:11\right)-16\right]+2015\)
\(B=3\cdot\left(5\cdot3-16\right)+2015\)
\(B=3\cdot\left(-1\right)+2015=2012\)
a) A = \(\frac{3}{10}-\frac{1}{18}.\left(-3\right)^2\)
A = \(\frac{11}{45}.\left(-3\right)^2\)
A = \(\frac{11}{5}\)
b) B = 3.\(\left\{5.\left[33:11\right]-16\right\}+2015\)
B = 3. \(\left\{5.3-16\right\}+2015\)
B = 3.(-1) + 2015
B = 2012
*Ahihi, làm nhiêu đó à làm biếng *